Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Understanding the impacts of pile-fermentation on the taste quality of dark tea (DT) is crucial. Although the large-leaf DT, Yinghong 9 DT, was successfully developed, its taste quality was not systematically studied. This research aims to analyze how pile-fermentation affects taste. Our taste evaluations indicated that pile-fermentation reduces astringency while slightly increasing bitterness. Through untargeted metabolomic analysis, we identified 16 key metabolites associated with these taste changes. The analysis of the dose-overthreshold values affirmed that rutin, isoquercetin, myricetin 3-galactoside, EGCG, DL-C, and ECG were found to lower astringency, while caffeine contributed to the slight increase in bitterness. Additionally, the changes in these metabolites are closely linked to the catalytic effects of microbial extracellular enzymes. These findings provide a theoretical foundation for a deeper understanding of how pile fermentation influences the taste quality of large-leaf DT.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.4c07851DOI Listing

Publication Analysis

Top Keywords

taste quality
12
key metabolites
8
dark tea
8
pile-fermentation taste
8
taste
6
metabolites influencing
4
influencing astringency
4
astringency bitterness
4
bitterness yinghong
4
yinghong large-leaf
4

Similar Publications

Development of benznidazole orally disintegrating tablets for paediatric patients.

J Pharm Pharmacol

September 2025

Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Cátedra de Tecnología Farmacéutica II, Universidad de Buenos Aires, C1113AAD Buenos Aires, Argentina.

Objectives: To develop the orphan drug benznidazole (BNZ) in orally disintegrating tablets, for the neglected disease American Trypanosomiasis (Chagas disease) therapy. Although children are highly affected by this disease, there are no specific commercial pharmaceutical preparations for this age group in Argentina and in many other countries.

Methods: In the production process, co-milling in a ball mill was applied to enhance dissolution rates, followed by direct compression.

View Article and Find Full Text PDF

What Makes Lupins Less Palatable to Consumers? Can the Sensory Quality of Lupin be Improved and Commercialized?

Compr Rev Food Sci Food Saf

September 2025

School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Bentley, Western Australia, Australia.

Introducing underutilized legumes as plant-based protein sources to daily meals is an approach to address the increasing demand for alternative proteins. However, legumes often exhibit off-flavors and aromas, causing negative consumer perceptions. Lupins are an underutilized legume that is becoming popular as a plant protein source due to their high protein, fiber, and low starch contents.

View Article and Find Full Text PDF

In this study, yak bone collagen peptide-tea polyphenol binding peptides (YCP/TP) were successfully prepared and investigated for their positive effects in replacing nitrite to improve the color, texture, flavor and bacterial community structure of fermented sausages. Results showed that YCP/TP primarily binds through hydrogen bond interactions, enhancing its stability and functional properties. The YCP/TP can effectively inhibit the increase in pH, protein carbonyls and TBARS (p < 0.

View Article and Find Full Text PDF

Exploring lactic acid bacteria diversity of hop plant by-products to develop a multi-strain starter culture to be used in hop-supplemented sourdough bread.

Food Res Int

November 2025

Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze, 43124 Parma, Italy; Institute of Biophysics, National Research Council (CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy.

The hop plant is gaining interest in the food, pharmaceutical, and cosmetics industries due to its abundance of secondary metabolites. However, branches and leaves, despite their antioxidant potential, are typically discarded. To valorize these components as functional ingredients they were dried, milled into hop powder (HP), and used to enrich bread.

View Article and Find Full Text PDF

This study presents a biopreservation method using sourdough co-fermented with Fructilactobacillus sanfranciscensis and Propionibacterium freudenreichii, optimizing conditions to 220 hydration and 24 h fermentation. The composite sourdough bread quality was evaluated through physicochemical, storage, sensory, and microbial tests, with mechanisms analyzed based on microstructure, rheology, and dough structure. Results showed that: first, the composite sourdough enhanced bread physicochemical properties, increasing volume, height-to-diameter ratio, elasticity, and resilience, while reducing baking loss, hardness, chewiness, and adhesiveness.

View Article and Find Full Text PDF