Polyamines: The valuable bio-stimulants and endogenous signaling molecules for plant development and stress response.

J Integr Plant Biol

National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.

Published: March 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Polyamines (PAs) are nitrogenous and polycationic compounds containing more than two amine residues. Numerous investigations have demonstrated that cellular PA homeostasis plays a key role in various developmental and physiological processes. The PA balance, which may be affected by many environmental factors, is finely maintained by the pathways of PA biosynthesis and degradation (catabolism). In this review, the advances in PA transport and distribution and their roles in plants were summarized and discussed. In addition, the interplay between PAs and phytohormones, NO, and HO were detailed during plant growth, senescence, fruit repining, as well as response to biotic and abiotic stresses. Moreover, it was elucidated how environmental signals such as light, temperature, and humidity modulate PA accumulation during plant development. Notably, PA has been shown to exert a potential role in shaping the domestication of rice. The present review comprehensively summarizes these latest advances, highlighting the importance of PAs as endogenous signaling molecules in plants, and as well proposes future perspectives on PA research.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jipb.13796DOI Listing

Publication Analysis

Top Keywords

endogenous signaling
8
signaling molecules
8
plant development
8
polyamines valuable
4
valuable bio-stimulants
4
bio-stimulants endogenous
4
molecules plant
4
development stress
4
stress response
4
response polyamines
4

Similar Publications

CircTTC3 regulates the osteogenic differentiation of adipose-derived mesenchymal stem cells via miR-205/Smad3 axis.

Exp Cell Res

September 2025

State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu City 610041, China. Electronic address:

Adipose-derived mesenchymal stem cells (ADSCs) hold great promise for bone tissue repair and regeneration. Circular RNAs (circRNAs) play a crucial role in regulating the osteogenic differentiation and bone remodeling of ADSCs; however, the underlying molecular mechanisms remain unclear. In this study, we conducted whole transcriptome sequencing (WTS) on ADSCs and constructed a competing endogenous RNA (ceRNA) regulatory network to identify the circTTC3/miR-205/mothers against decapentaplegic homolog 3 (Smad3) signaling axis.

View Article and Find Full Text PDF

Tauroursodeoxycholic acid modulates neuroinflammation via STING/NF-κB inhibition after traumatic brain injury.

Int Immunopharmacol

September 2025

Department of Medical Science Research Center, Brain Injury and Drug Prevention Research Key Laboratory of Shaanxi Universities, Peihua University, Xi'an, Shaanxi 710125, China; Department of Neurosurgery, Bijie Traditional Chinese Medicine Hospital, Bijie 551700, China; School of Life and Health Sc

The incidence of traumatic brain injury (TBI) has demonstrated a marked escalation recently. Nevertheless, there remains a critical paucity of effective drug interventions targeting persistent neuroinflammation-induced damage following TBI. STING/NF-κB axis-induced pyroptosis emerges as a pivotal mechanism driving persistent neuroinflammation, providing it as a potential target for multi-pathway precision therapeutic in TBI.

View Article and Find Full Text PDF

β-Glucan, a polysaccharide from Saccharomyces cerevisiae with immunomodulatory activities that may not trigger pro-inflammatory responses in microglia, has been reported to show rapid antidepressant effects in chronically stressed animals by restoring microglial function in the dentate gyrus. However, the mechanisms underlying this effect of β-glucan are still largely unclear. Considering the importance of astrocytic purinergic 2Y1 receptors (P2Y1Rs) and brain-derived neurotrophic factor (BDNF) in the antidepressant effects of microglial stimulation, we hypothesize that β-glucan produces antidepressant effects by mobilizing astrocytic P2Y1R-triggered BDNF signaling in the hippocampus.

View Article and Find Full Text PDF

Therapeutic Potential of Agmatine in Alcohol Use Disorder: Preclinical insights and future directions.

Behav Brain Res

September 2025

Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, MS 441 002, India. Electronic address:

Alcohol Use Disorder (AUD) is a major global health challenge characterized by the recurrence of alcohol consumption, withdrawal symptoms, and significant social, economic, and health-related burdens. Despite conventional treatments such as cognitive behavioral therapy and medications like disulfiram and naltrexone, the majority of patients do not achieve adequate relief due to the multifactorial nature of this disorder, including mental health issues and neuroadaptive changes. Recent studies demonstrated that chronic alcohol consumption results in the disruption of both the production and signaling of endogenous agmatine, a neuromodulator synthesized from L-arginine.

View Article and Find Full Text PDF

YAP/TAZ are transcriptional co-activators that pair with transcription factor TEA/ATTS domains (TEADs) for modulating the Hippo pathway. Previous works propose the potential role of YAP/TAZ phase separation for transcriptional activation, yet the biomolecular basis of endogenous YAP/TAZ-TEAD condensates remains unclear. Here, we dissect their endogenous morphology, revealing that YAP/TAZ are client proteins recruited to TEAD condensates in various human cell lines.

View Article and Find Full Text PDF