98%
921
2 minutes
20
The agro-industry generates substantial waste, necessitating eco-friendly solutions. This study introduces a novel molecularly imprinted polymer (MIPs) for the selective separation of D-xylose from sugarcane residues. A non-covalent imprinted polymer was synthesized via precipitation and optimized through D-xylose adsorption assays. The polymer demonstrated an Imprinting Factor of 3.34, adsorption equilibrium within 30 min, notable reusability retaining over 95% of its adsorption capacity after three cycles, and high selectivity coefficients (α > 2.00) for all saccharides tested. The adsorption isotherm followed the Langmuir model. Characterization confirmed successful imprinting, with the imprinted polymer exhibiting a surface area of 69.4 m/g and pore volume of 0.26 cm/g, compared to 8.7 m/g and 0.03 cm/g for the non-imprinted polymer. D-xylose separation was tested using hemicellulosic hydrolysate from sugarcane straw and bagasse. The polymer applied as a sorbent in dispersive solid-phase extraction with the hydrolysate achieved 90.29 ± 1.27% D-xylose adsorption. Desorption in pure water recovered 81.48 ± 1.22% of the adsorbed D-xylose. This method advances separation techniques, offering an efficient solution for sample pre-treatment and expanding the application of MIPs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jssc.70024 | DOI Listing |
Anal Chem
September 2025
Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China.
Sulfamethoxazole (SMX) is a widely used antibiotic with toxic and persistent residues, which poses potential health risks in aquatic environments. However, reliable and accurate detection is impeded by the nonspecific adsorption of interfering biomolecules in complex matrices. This study develops a molecularly imprinted photoelectrochemical (PEC) sensor based on BiOS/BiWO with excellent selectivity and antifouling properties.
View Article and Find Full Text PDFAdv Mater
September 2025
Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China.
Despite significant advancements in aerogels science, the fabrication of high-performance aerogels with their plastic processability remains unexplored owing to their inherent trade-off between skeletal rigidity and transformable processability. Herein, a universal solubility-pKa coupling-effect to engineer high-performance thermoplastic nylon aerogel family with excellent thermomechanical processing performance is proposed. By modulating solubility parameters and acid dissociation constants in nylon-solvent systems, it is precisely control crystallization to assemble interlaced 1D nanofiber skeletons, yielding nylon aerogels that integrate a high specific surface area (226 m g), exceptional compressive modulus (12.
View Article and Find Full Text PDFMikrochim Acta
September 2025
Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Türkiye.
A novel molecularly imprinted polymer (MIP)-based electrochemical sensor has been developed for the selective detection of naringenin (NAR) in various real-world samples, including plant extracts, wine, and herbal supplements. To enhance the active surface area and porosity of the glassy carbon electrode (GCE), a 2D/0D nanocomposite composed of graphene oxide (GO) and cobalt ferrite (CFO) nanoparticles, CFO_GO, was incorporated into the sensor design. 4-aminobenzoic acid (4-ABA) was selected as the functional monomer to prepare the MIPs.
View Article and Find Full Text PDFAnal Methods
September 2025
College of Environmental Science and Engineering, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Niversity Engineering Research Center of Watershed Protection and Green Development, Guilin University of Technology, Guilin, 541006, China.
The amplification of detection signals is an important method for improving the sensitivity of electrochemical detection. This study presents an efficient strategy for preparing electrochemical catalytic materials using a simple self-assembly technique to encapsulate Fe single atoms (Fe-SAs) and Ni single atoms (Ni-SAs) in the Cu-benzene-1,3,5-tricarboxylic acid (Cu-BTC) metal-organic framework to form a Cu-BTC@FeNi-SAs catalytic system. Subsequently, Cu-BTC@FeNi-SAs was modified on the surface of a gold electrode, and sulfadiazine was used as a template to prepare a molecularly imprinted polymer (MIP) on the modified electrode.
View Article and Find Full Text PDFFood Chem
September 2025
School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430028, China.
A versatile fluorescent molecularly imprinted nanosensor (MIPs@O-CDs) for profiling ciprofloxacin (CIP) was innovatively developed using a controllable post-imprinting modification strategy. High-affinity molecularly imprinted polymers (MIPs) as recognition elements granted nanosensor favorable anti-interference. Bright orange-emission carbon dots (O-CDs) as signal transducers demonstrated prominent reverse fluorescence response to CIP due to inner filter effect, ameliorating detection sensitivity and accuracy.
View Article and Find Full Text PDF