Electrochemical Upgrading of Waste Polylactic Acid Plastic for the Coproduction of C Chemicals and Green Hydrogen.

Molecules

Institute for Advanced Interdisciplinary Research (iAIR), Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, University of Jinan, Jinan 250022, China.

Published: November 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Tandem alkali-catalyzed hydrolysis and alkaline electrolysis have gradually become appealing avenues for the reformation of polyester plastics into high-value-added chemicals and green hydrogen with remarkable environmental and economic benefits. In this study, an electrochemical upcycling strategy was developed for the electrocatalytic oxidation of polylactic acid (PLA) hydrolysate into valued C chemicals (i.e., acetate) and hydrogen fuel using N, P-doped CuO nanowires (NW) supported on nickel foam (NF) as the electrocatalyst. This 3D well-integrated catalyst was easily prepared from a Cu(OH) NW/NF precursor with as a green and safe P and N source. The electrocatalyst can efficiently catalyze the lactate monomer derived from the hydrolysis of PLA waste to acetate with high selectivity and exhibits a lower onset potential for the lactate oxidation reaction (LOR) than for water oxidation, saving 224 mV to deliver a current density of 30 mA/cm. The experimental results reveal that the plausible pathway of the LOR on these CuO NW involves oxidation and subsequent decarboxylation. Divalent copper species have been verified to be active sites for LOR via in situ Raman spectroscopy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11596206PMC
http://dx.doi.org/10.3390/molecules29225323DOI Listing

Publication Analysis

Top Keywords

polylactic acid
8
chemicals green
8
green hydrogen
8
electrochemical upgrading
4
upgrading waste
4
waste polylactic
4
acid plastic
4
plastic coproduction
4
coproduction chemicals
4
hydrogen tandem
4

Similar Publications

Objectives: Bortezomib (BTZ) functions as an androgen receptor signalling inhibitor, is used for the treatment of prostate cancer, and has been sanctioned by the United States Food and Drug Administration. The medicinal applications of BTZ are impeded by low solubility, first-pass metabolism, and restricted bioavailability. This study aimed to develop and enhance polylactic acid-co-glycolic acid (PLGA) nanobubbles (NBs) as a sustained-release mechanism for BTZ, thereby augmenting stability and bioavailability.

View Article and Find Full Text PDF

Construction of environmentally friendly multifunctional core-shell flame retardant and its application in flame retardant polylactic acid.

Int J Biol Macromol

September 2025

College of Materials Science and Engineering, Zhejiang Key Laboratory of Plastic Modification and Processing Technology, Zhejiang University of Technology, Hangzhou, 310014, PR China.

The flammability and poor ultraviolet (UV) aging resistance of polylactic acid (PLA) limit its applications outdoors and in fields requiring flame retardancy. To address these limitations, this study designed ammonium polyphosphate (APP) as the core, the biopolymer chitosan (CS) as the inner shell, and lignin (LK) as the outer shell. CS and LK are deposited on the surface of APP via electrostatic interaction in the aqueous phase to prepare a core-shell structure flame retardant APP@CS@LK with anti-UV aging properties.

View Article and Find Full Text PDF

Hepatotoxicity induced by polylactic acid microplastics: The mediating role of gut microbiota and uric acid metabolism.

J Adv Res

September 2025

National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China. Electronic address: huangzhenlie85825

Introduction: The increasing use of biodegradable plastics has led to the inevitable human consumption of biodegradable microplastics (MPs). These MPs can be degraded and absorbed into various organs and tissues via the gastrointestinal tract, with the liver being the primary target for digestion and absorption.

Objectives: This study aimed to investigate the toxic effects and mechanisms of biodegradable MPs on the liver following gastrointestinal degradation.

View Article and Find Full Text PDF

NIR-responsive dextran / poly(lactide) hydrogels: Characterization of cleavable hydrogels and photoactivated release of proteins.

Carbohydr Polym

November 2025

Department of Polymers for Health and Biomaterials, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France; Department of Pharmacy, Nîmes University Hospital, 30900 Nimes, France. Electronic address:

Polysaccharide-based hydrogels often lack mechanical strength and, when used for protein delivery, are generally limited to diffusion-based release. In this work, we developed robust polysaccharide- and polyester-based near-infrared (NIR)-responsive hydrogels. Hydrogels are made from photo-crosslinked methacrylated dextran (DEX-MA), methacrylated polylactide containing oxygen reactive species (ROS) sensitive thioketal groups (PLA-TK-MA), and covalently bound protoporphyrin IX (PPIX) that generates ROS under NIR irradiation.

View Article and Find Full Text PDF

Phytic acid and melamine-modified microcrystalline cellulose as effective flame retardants in polylactic acid composites.

Carbohydr Polym

November 2025

School of Chemistry and Chemical Engineering, State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China. Electronic address:

This study introduces a novel bio-based flame retardant, MCC-GMA-PA-MEL, synthesized from microcrystalline cellulose (MCC) modified with phytic acid (PA) and melamine (MEL). Characterization of the resulting composites revealed a significant enhancement in PLA crystallinity to 35.9 %, driven by improved molecular mobility and heterogeneous nucleation effects.

View Article and Find Full Text PDF