98%
921
2 minutes
20
Sphingolipids play a major role in the regulation of hepatocellular apoptosis and proliferation. We have previously identified sphingolipid metabolites as biomarkers of chronic liver disease and hepatocellular carcinoma. Human hepatocellular carcinoma cell lines were transfected with a plasmid vector encoding for acid sphingomyelinase. Overexpressing cells were subsequently treated with mitomycin and cell proliferation, acid sphingomyelinase activity, sphingolipid concentrations, and generation of reactive oxygen species were assessed. The stimulation of acid sphingomyelinase-overexpressing cell lines with mitomycin showed a significant activation of the enzyme ( < 0.001) followed by an accumulation of various ceramide species ( < 0.001) and reactive oxygen radicals ( < 0.001) as compared to control transfected cells. Consequently, a significant reduction in cell proliferation was observed in acid sphingomyelinase-overexpressing cells ( < 0.05) which could be diminished by the simultaneous application of antioxidant agents. Moreover, the application of mitomycin induced significant alterations in mRNA expression levels of ceramidases and sphingosine kinases ( < 0.05). Our data suggest that the overexpression of the acid sphingomyelinase in human hepatoma cell lines enhances the antiproliferative potential of mitomycin via accumulation of ceramide and reactive oxygen species. The selective activation of acid sphingomyelinase might offer a novel therapeutic approach in the treatment of hepatocellular carcinoma.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11594907 | PMC |
http://dx.doi.org/10.3390/ijms252212175 | DOI Listing |
Oncol Res
September 2025
Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Autonomous University of Nuevo León (UANL), Monterrey, 64460, Mexico.
Emerging evidence highlights the potential of bioactive compounds, particularly polyphenols, as adjunctive therapeutic agents in the treatment of pancreatic cancer (PC), one of the most aggressive malignancies. This review focuses on epigallocatechin gallate (EGCG) and resveratrol due to their extensively documented anticancer activity, favorable safety profiles, and their unique ability to modulate multiple signaling pathways relevant to pancreatic tumorigenesis. Among polyphenols, these two have shown superior anti-cancer activity, epigenetic regulatory effects, and synergy with standard chemotherapies in preclinical pancreatic cancer models.
View Article and Find Full Text PDFJ Neurochem
September 2025
Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Center "Kurchatov Institute", Gatchina, Russian Federation.
Mutations in the GBA1 gene, encoding the lysosomal enzyme glucocerebrosidase (GCase), and the LRRK2 gene, encoding leucine-rich repeat kinase 2 (LRRK2) are the most common genetic risk factors for Parkinson's disease (PD). The potential use of LRRK2 inhibitors for treating not only LRRK2-associated PD (LRRK2-PD) but also GBA1-associated PD (GBA1-PD) is currently under discussion. In the present study, we aimed to evaluate whether LRRK2 inhibition affects lysosomal hydrolase enzymatic activities, autophagy, and alpha-synuclein levels in various cell types derived from LRRK2-PD and GBA1-PD patients, including macrophages derived from peripheral blood mononuclear cells (PBMC-derived macrophages), dopaminergic (DA) neurons derived from induced pluripotent stem cells (iPSC-derived DA neurons), and SH-SY5Y cells.
View Article and Find Full Text PDFDevelopment
September 2025
Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Canada.
Sphingolipids are a class of bioactive signaling lipids that regulate an array of fundamental cellular processes, including cell survival, proliferation, and differentiation. Deficiency of acid sphingomyelinase-an enzyme of the sphingolipid metabolic pathway- has been previously implicated in human placental pathologies. We demonstrate that acid sphingomyelinase (Smpd1) is required for normal placental development in mouse, and its deficiency results in an intrauterine growth restriction phenotype.
View Article and Find Full Text PDFInt J Exp Pathol
September 2025
Laboratory of Pharmacobiology, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.
Porcine respiratory disease complex (PRDC) is a common syndrome in the modern swine industry worldwide, and its pathogenesis remains unclear to date. Our study aimed to investigate PRDC-induced pulmonary fibrosis and sphingolipid metabolism, and their relationship. Mouse and cell line (A549 and 3D4/21) models exposed to bleomycin and/or transforming growth factor-β1 (TGF-β1) were developed.
View Article and Find Full Text PDF