98%
921
2 minutes
20
Severe Fever with Thrombocytopenia Syndrome Virus (SFTSV), a novel bunyavirus primarily transmitted by Haemaphysalis longicornis, induces severe disease with a high mortality rate. N6-methyladenosine (m6A) is a prevalent internal chemical modification in eukaryotic mRNA that has been reported to regulate viral infection. However, the role of m6A modification during SFTSV infection remains elusive. We here reported that SFTSV RNAs bear m6A modification during infection. Manipulating the expressions or activities of host m6A regulators significantly impacted SFTSV infection. Mechanistically, SFTSV recruited m6A regulators through the nucleoprotein to modulate the m6A modification of viral RNA, eventually resulting in enhanced infection by promoting viral mRNA translation efficiency and/or genome RNA stability. m6A mutations in the S genome diminished virus particle production, while m6A mutations in the G transcript impaired the replication of recombinant vesicular stomatitis virus (rVSV) expressing G protein in vitro and in vivo. Interestingly, m6A modification was evolutionarily conserved and facilitated SFTSV infection in primary tick cells. These findings may open an avenue for the development of m6A-targeted anti-SFTSV vaccines, drugs, and innovative strategies for the prevention and control of tick-borne disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11627400 | PMC |
http://dx.doi.org/10.1371/journal.ppat.1012725 | DOI Listing |
J Biochem Mol Toxicol
September 2025
Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
Heat shock protein family A member 4-like (HSPA4L) has been shown to be overexpressed in osteoarthritis (OA) patients, but its role in OA process still unknown. Chondrocytes were stimulated with interleukin-1β (IL-1β) to mimic OA cell model in vitro, and rat was injected with monosodium iodoacetate (MIA) to construct OA rat model in vivo. The expression of HSPA4L, methyltransferase-like 3 (METTL3) and extracellular matrix (ECM)-related markers was examined by qRT-PCR or western blot.
View Article and Find Full Text PDFMedComm (2020)
September 2025
Department of Laboratory Medicine Zhongnan Hospital of Wuhan University Wuhan China.
RNA modifications, including N6-methyladenosine (m6A), 5-methylcytosine, and pseudouridine, serve as pivotal regulators of gene expression with significant implications for human health and disease. These dynamic modifications influence RNA stability, splicing, translation, and interactions, thereby orchestrating critical biological processes such as embryonic development, immune response, and cellular homeostasis. Dysregulation of RNA modifications is closely associated with a variety of pathologies.
View Article and Find Full Text PDFNAR Cancer
September 2025
Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden.
Epitranscriptomic modifications regulate gene expression and have been implicated in cancer, including breast cancer. Using the SCAN-B cohort, we analyzed 49 messenger RNA modification regulators (mRMPs) across breast cancer subtypes. In the basal subtype, we found significant overexpression of mA readers (IGF2BP1-3), mC regulators (NSUN5, ALYREF, YBX1, YBX2), pseudouridine [PUS1, MARS (or MetRS), RPUSD2], and RNA editing enzymes [APOBEC3A (A3A), A3G, ADAR1], all linked to poor survival.
View Article and Find Full Text PDFOncol Res
September 2025
Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, 610041, China.
Objectives: Hepatocellular carcinoma (HCC) is among the most frequently occurring malignant tumors of the digestive tract and is associated with an increased mortality rate worldwide. This study aimed to develop and validate a prognostic model based on immunogenic cell death (ICD)-related genes to predict patient survival and guide individualized treatment strategies for HCC.
Methods: ICD-related genes were identified from the GeneCards database using a relevance score threshold of >10.
Data Brief
October 2025
Department of Endocrinology, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China.
This dataset focuses on N6-Methyladenosine (m6A) RNA methylation in papillary thyroid carcinoma (PTC) without autoimmune thyroid disease (AITD). Emerging evidence suggests that m6A modification was associated with the occurrence and progression of both thyroid carcinoma and AITD. Given the substantial clinical overlap between thyroid carcinoma (particularly PTC) and AITD, rigorous exclusion of autoimmune confounding factors is essential to isolate the distinct role of m6A modifications in driving thyroid carcinogenesis and progression.
View Article and Find Full Text PDF