Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aqueous zinc-ion batteries (AZIBs) with MnO cathodes have promising application prospects; however, their performance is hindered by their low efficiency and insufficient life. By leveraging the nanomicellar properties of cetyltrimethylammonium bromide (CTAB), a hierarchical δ-MnO with 2D/3D structure was directionally grown on a modified carbon cloth (CC) collector for realizing high-mass-loading AZIBs. Experimental results reveal the synergistic effects of micro/nano hierarchically structured MnO-CC heterointerfaces in accelerating the electron migration and transfer rate of Zn/H. Functioning as a conductive skeleton and flexible substrate, CC efficiently improves the reaction kinetics and buffers the interfacial stress resulting from the structural evolution of MnO during the long-term electrode reaction. This phenomenon is investigated using advanced characterisation techniques, including X-ray absorption fine structure spectroscopy, Kelvin probe force microscopy, and theoretical simulations. The fabricated electrode exhibits superior electrochemical properties, such as high capacity (409.6 mA h g at 0.1 A g) and reliable cycling performance (with 86.6% capacity retention after 2000 cycles at 1.0 A g). Even at a high mass loading of 6.0 mg cm, the battery retains 81.8% of its original capacity after 1300 cycles. The proposed interface engineering strategy provides valuable insights into realising high-loading and long-life AZIBs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11575624PMC
http://dx.doi.org/10.1039/d4sc06182aDOI Listing

Publication Analysis

Top Keywords

zinc-ion batteries
8
tailoring hierarchical
4
hierarchical mno
4
mno nanostructures
4
nanostructures self-supporting
4
self-supporting cathodes
4
cathodes high-mass-loading
4
high-mass-loading zinc-ion
4
batteries aqueous
4
aqueous zinc-ion
4

Similar Publications

Molecular Engineering Empowers Phenanthraquinone Organic Cathodes with Exceptional Cycling Stability for Lithium- and Aqueous Zinc-Ion Batteries.

Adv Sci (Weinh)

September 2025

School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, State Key Laboratory of Advanced Materials for Intelligent Sensing, Tianjin University, Tianjin, 300072, China.

Organic electrode materials have garnered great attention in recent years, owing to their resource sustainability, structural diversity, and superior compatibility with various ionic species. Among them, quinone-based compounds have attracted particular interest. Notably, compared with para-quinone analogs (e.

View Article and Find Full Text PDF

Aqueous zinc-ion batteries (AZIBs) represent an environmentally benign energy storage alternative. However, the VO cathode suffers from limited cycling stability and rate capability due to structural instability, vanadium dissolution, and high desolvation energy caused by the large size of [Zn(HO)] deintercalation. Address these issues, we introduce a VO/VOPO (VOP) heterostructure that that reinforces the crystal structure to suppress vanadium dissolution and establishes a hydrophilic interface reducing the desolvation energy of Zn.

View Article and Find Full Text PDF

Potassium optimization of sodium hydrogen vanadate thin nanosheets with superior performance for aqueous zinc-ion batteries.

Chem Commun (Camb)

September 2025

Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.

In this work, a series of potassium ion (K) pre-intercalated sodium hydrogen vanadates (K-HNVO) are prepared through a facile route. The introduction of K modulates the microstructure of the pristine sodium metavanadate and increases the interlayer spacing, thereby resulting in improved charge transport kinetics. Moreover, the pillaring effect of K enhances the structural stability of the pristine material.

View Article and Find Full Text PDF

Economically viable and biologically compatible amino acids demonstrate significant potential as electrolyte microstructure modifiers in aqueous zinc-ion batteries (AZIBs). Compared to polar amino acids, nonpolar amino acids simultaneously own zincophilicity and hydrophobicity, showing great potential in the industrial application of AZIBs. However, nonpolar amino acids have been comparatively understudied in existing research investigations.

View Article and Find Full Text PDF

A solid-state battery capable of 180 C superfast charging and 100% energy retention at -30 °C.

Proc Natl Acad Sci U S A

September 2025

Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China.

Solid-state electrolytes (SSEs) are being extensively researched as replacements for liquid electrolytes in future batteries. Despite significant advancements, there are still challenges in using SSEs, particularly in extreme conditions. This study presents a hydrated metal-organic ionic cocrystal (HMIC) solid-state ion conductor with a solvent-assisted ion transport mechanism suitable for extreme operating conditions.

View Article and Find Full Text PDF