Preparation of Multifunctional Nano-Protectants for High-Efficiency Green Control of Anthracnose.

Adv Sci (Weinh)

Frontiers Science Center for Molecular Design Breeding, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China.

Published: December 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nanomaterials cannot only act as active ingredients (AIs), but also adjuvants to encapsulate or attach AIs to improve their fungicidal activity. Herein, a hydrophilic and lipophilic diblock polymer (HLDP) is designed and synthesized to prepare a series of HLDP nano-protectants to explore the best HLDP nano-protectant for anthracnose management. These results demonstrate that the HLDP-CS nano-protectant displays the best control effects on mango anthracnose via the direct pathogen inhibition and amplified plant immune responses. The HLDP can be spontaneously conjugated with CS into nanoscale spherical particles through hydrophobic interaction. The complexation of CS with HLDP remarkably improves the deposition and adhesion of CS droplets on mango leaves. The HLDP can interact with mycelium via electrostatic interaction to damage the cell wall/membrane, which can act as an AI to directly suppress the spore germination and mycelial growth. Meanwhile, HLDP can be applied as an adjuvant for CS to amplify the plant immune responses via accelerating the biosynthesis of secondary metabolites and plant hormones. This work reports the multiple missions for nanomaterials in pathogen control, which proposes a novel strategy for designing nano-protectant with dual-synergistic mechanism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672290PMC
http://dx.doi.org/10.1002/advs.202410585DOI Listing

Publication Analysis

Top Keywords

plant immune
8
immune responses
8
hldp
7
preparation multifunctional
4
multifunctional nano-protectants
4
nano-protectants high-efficiency
4
high-efficiency green
4
green control
4
control anthracnose
4
anthracnose nanomaterials
4

Similar Publications

OsSTK-Mediated Sakuranetin Biosynthesis and Carbon Flux Orchestrate Growth and Defence in Rice.

Plant Biotechnol J

September 2025

State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.

Plants balance resource energy allocation between growth and immunity to ensure survival and reproduction under limited availability. This study reveals that rice cultivars with elevated sucrose levels boost resistance to the fungal pathogen Magnaporthe oryzae by accumulating the phytoalexin sakuranetin, regulated by the transcription factor STOREKEEPER (OsSTK). OsSTK binds to the promoter region of OsNOMT (Naringenin-7-O-Methyltransferase) to drive sakuranetin biosynthesis.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is a prevalent malignant neoplasm of the digestive system, including 80% of primary liver malignancies. The Wnt/β-catenin signaling pathway plays a key role in immune response and tumer resistance. A growing number of studies have shown that the Wnt/β-catenin signaling pathway is involved in the pathogenesis of HCC.

View Article and Find Full Text PDF

Ribonucleases (RNases) represent a distinct category of nucleases that facilitate RNA degradation into smaller components. These enzymes are particularly adept at dismantling RNA strands and other materials. A promising strategy for the targeted treatment of cancer cells involves the administration of antibody-based toxic agents designed to eliminate tumor cells specifically.

View Article and Find Full Text PDF

Bacillus drives functional states in synthetic plant root bacterial communities.

Genome Biol

September 2025

Department of Biology, Plant-Microbe Interactions, Science for Life, Utrecht University, Utrecht, 3584CH, The Netherlands.

Background: Plant roots release root exudates to attract microbes that form root communities, which in turn promote plant health and growth. Root community assembly arises from millions of interactions between microbes and the plant, leading to robust and stable microbial networks. To manage the complexity of natural root microbiomes for research purposes, scientists have developed reductionist approaches using synthetic microbial inocula (SynComs).

View Article and Find Full Text PDF

Suaeda salsa(S.salsa) is a promising halophytic species for vegetation restoration in highly saline-alkali soils. Carboxylated single-walled carbon nanotubes (COOH-SWCNTs) have emerged as potential agents for modulating plant responses to abiotic stress.

View Article and Find Full Text PDF