Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In pursuing artificial intelligence for efficient collision avoidance in robots, researchers draw inspiration from the locust's visual looming-sensitive neural circuit to establish an efficient neural network for collision detection. However, existing bio-inspired collision detection neural networks encounter challenges posed by jitter streaming, a phenomenon commonly experienced, for example, when a ground robot moves across uneven terrain. Visual inputs from jitter streaming induce significant fluctuations in grey values, distracting existing bio-inspired networks from extracting visually looming features. To overcome this limitation, we derive inspiration from the potential of feedback loops to enable the brain to generate a coherent visual perception. We introduce a novel dynamic temporal variance feedback loop regulated by scalable functional into the traditional bio-inspired collision detection neural network. This feedback mechanism extracts dynamic temporal variance information from the output of higher-order neurons in the conventional network to assess the fluctuation level of local neural responses and regulate it by a scalable functional to differentiate variance induced by incoherent visual input. Then the regulated signal is reintegrated into the input through negative feedback loop to reduce the incoherence of the signal within the network. Numerical experiments substantiate the effectiveness of the proposed feedback loop in promoting collision detection against jitter streaming. This study extends the capabilities of bio-inspired collision detection neural networks to address jitter streaming challenges, offering a novel insight into the potential of feedback mechanisms in enhancing visual neural abilities.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neunet.2024.106882DOI Listing

Publication Analysis

Top Keywords

collision detection
24
jitter streaming
20
dynamic temporal
12
temporal variance
12
scalable functional
12
bio-inspired collision
12
detection neural
12
feedback loop
12
variance feedback
8
regulated scalable
8

Similar Publications

Complementary Separation of Novel Synthetic Opioids.

J Am Soc Mass Spectrom

September 2025

Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States.

The escalating prevalence and diversity of fentanyl analogues poses an immediate concern for the global community. Fentanyl and its analogues are the primary contributors to both fatal and nonfatal overdoses in the United States. The most recent instances of fentanyl-related overdoses have been attributed to the illicit production of fentanyl, characterized by its exceptionally potent nature.

View Article and Find Full Text PDF

The interstellar medium (ISM) is a complex and dynamic environment in which molecular collisions play a crucial role. Among these, protonated carbon chains are of great interest due to the presence of a permanent dipole moment and their relevance in describing astrochemical processes, making their detection possible in cold molecular clouds such as TMC-1. C5H+ (1Σg+) is an important molecule for understanding the formation and evolution of carbon-rich environments.

View Article and Find Full Text PDF

By connecting laboratory dynamics with cosmic observables, this work highlights the critical role of reactions between highly reactive species in shaping the molecular inventory of the interstellar medium and opens new windows into the spectroscopically elusive corners of astrochemical complexity. The gas phase formation of distinct CH isomers is explored through the bimolecular reaction of tricarbon (C, XΣ ) with the vinyl radical (CH, XA') at a collision energy of 44 ± 1 kJ mol employing the crossed molecular beam technique augmented by electronic structure and Rice-Ramsperger-Kassel-Marcus (RRKM) calculations. This barrierless and exoergic reaction follows indirect dynamics and is initiated by the addition of tricarbon to the radical center of the vinyl radical forming a symmetric doublet collisional complex (CCCCHCH).

View Article and Find Full Text PDF

Integrated Pneumatic-Auxiliary Sensing Array for Real-Time Elbow Joint Kinematics Tracking and Anomaly Prevention.

ACS Appl Mater Interfaces

September 2025

The Institute of Precision Machinery and Smart Structure, College of Engineering, Zhejiang Normal University, Jinhua, Zhejiang 321004, China.

Flexible sensors integrating motion detection and tactile perception capabilities demonstrate significant potential in aerospace biomechanics and medical rehabilitation. Here, we report a biomimetic inflatable chamber sensor that synergistically integrates pneumatic-auxiliary and electronic sensing for elbow joint health monitoring. The device architecture combines multiwalled carbon nanotube-reinforced silicone composites with embedded electrode arrays integrated within the inner lining of inflatable chambers, achieving high sensitivity while maintaining signal stability under electromagnetic interference.

View Article and Find Full Text PDF

Native mass spectrometry (MS) enables the analysis of protein interactions in complex biological mixtures. However, nonvolatile salts and buffers commonly present in such samples can cause ion adduction, peak broadening, and reduced signal intensity. Reducing the pressure surrounding the ionization emitter significantly improves native MS performance under these challenging conditions.

View Article and Find Full Text PDF