Publications by authors named "Jake P Violi"

Native mass spectrometry (MS) enables the analysis of protein interactions in complex biological mixtures. However, nonvolatile salts and buffers commonly present in such samples can cause ion adduction, peak broadening, and reduced signal intensity. Reducing the pressure surrounding the ionization emitter significantly improves native MS performance under these challenging conditions.

View Article and Find Full Text PDF

A merocyanine-based amphiphile was self-assembled into ellipsoids that can be disassembled by irradiation with visible light and reassemble in the dark after a delay of ∼70 minutes. Above a threshold concentration, the reassembly occurs when the ratio of protonated merocyanine to spiropyran reaches 7:3, suggesting both isomers are involved in the assembly. The thermal isomerization of the amphiphile when assembled (half-life ∼13 minutes) is significantly slower than that in dilute solution (half-life ∼3.

View Article and Find Full Text PDF

Electrospray ionization (ESI) is well-known for generating multiply charged protein ions. Higher charge states enhance tandem mass spectrometry (MS/MS) by improving fragmentation efficiency and increasing sequence coverage. However, the extent of protein charging can be limited by many factors including proton transfer reactions with ambient gases.

View Article and Find Full Text PDF

This paper describes gold-free central nervous system (CNS) drug conjugation with a neural tracing protein, which represents a significant advance toward clinical relevance of the underlying blood-brain barrier (BBB)-bypassing drug delivery nanotechnology. Retrograde neural tracing proteins, such as wheat germ agglutinin (WGA), have been widely used for histochemical staining to map neuronal connections between peripheral nerve terminals and CNS neurons. Here, we demonstrate that WGA on its own can simultaneously function as a nanocarrier, transporter, and targeting agent by its direct chemical conjugation to a CNS drug, dipropylcyclopentyl xanthine (DPCPX), using minimal synthetic steps and reagents without requiring an additional nanoparticle linker.

View Article and Find Full Text PDF

The ability to control the relative motion between different components of molecules with precision is a cornerstone of synthetic nanotechnology. Mechanically interlocked molecules such as rotaxanes offer a platform for exploring this control by means of the positional manipulation of their components. Here, we demonstrate the use of a molecular dual pump to achieve the assembly of translational isomers with high efficiency and accuracy.

View Article and Find Full Text PDF

Blue-green algae (cyanobacteria), an ancient phylum of bacteria, produce a wide array of secondary metabolites that are toxic to humans. Rapid growth of cyanobacteria in an aquatic environment can result in algal blooms capable of turning waterways green and increasing toxin levels in the environment. Cyanobacterial toxins were first linked to the high incidence of a complex neurodegenerative disorder reported on the island of Guam in the 1940s but more recently have been linked to clusters of sporadic amyotrophic lateral sclerosis (sALS) worldwide.

View Article and Find Full Text PDF

A ruthenium(II) complex with a photoswitchable arylazopyrazole ligand is reported. Under irradiation a combination of photoisomerisation and photoejection of the ligand occurs.

View Article and Find Full Text PDF

Metabolomics analyses enable the examination and identification of endogenous biochemical reaction products, revealing information on the metabolic pathways and processes active within a living cell or organism. Determination of metabolic shifts can provide important information on a treatment or disease. Unlike other omics fields that typically have analytes of the same chemical class with common building blocks, those that fall under the nomenclature of metabolites encompass a wide array of different compounds with very diverse physiochemical properties.

View Article and Find Full Text PDF

Stereoisomerism, stemming from the spatial orientation of components in molecular structures, plays a decisive role in nature. While the unconventional bonding found in mechanically interlocked molecules gives rise to unique expressions of stereochemistry, the exploration of their stereoisomers is still in its infancy. Sequence isomerism, characterized by variations in the ordering of mechanically interlocked components in catenanes and rotaxanes, mirrors the sequence variations found in biological macromolecules.

View Article and Find Full Text PDF

A heteroleptic [PdLL'] coordination cage containing a photoswitchable azobenzene-derived ligand catalyzes the Michael addition reaction between methyl vinyl ketone and benzoyl nitromethane within its cavity. The corresponding homoleptic cages are catalytically inactive. The heteroleptic cage can be reversibly disassembled and reassembled using 530 and 405 nm light, respectively, allowing catalysis within the cage to be switched and at will.

View Article and Find Full Text PDF

Wildfires that raged across Australia during the 2019-2020 'Black Summer' produced an enormous quantity of particulate matter (PM) pollution, with plumes that cloaked many urban centres and ecosystems along the eastern seaboard. This has motivated a need to understand the magnitude and nature of PM exposure, so that its impact on both built and natural environments can be more accurately assessed. Here we present the potentially toxic fingerprint of PM captured by building heating, ventilation, and air conditioning filters in Sydney, Australia during the peak of the Wildfires, and from ambient urban emissions one year later (Reference period).

View Article and Find Full Text PDF

The cyanobacterial non-protein amino acid (AA) β-Methylamino-L-alanine (BMAA) is considered to be a neurotoxin. BMAA caused histopathological changes in brains and spinal cords of primates consistent with some of those seen in early motor neuron disease; however, supplementation with L-serine protected against some of those changes. We examined the impact of BMAA on AA concentrations in human neuroblastoma cells in vitro.

View Article and Find Full Text PDF

β-N-methylamino-L-alanine (BMAA) and its isomers, 2,4-diaminobutyric acid (2,4-DAB) and N-(2-aminoethyl)-glycine (AEG), along with microcystins (MCs)-RR, -LR, and -YR (the major MC congeners), are cyanotoxins that can cause detrimental health and environmental impacts during toxic blooms. Currently, there are no reverse-phase (RP) LC-MS/MS methods for the simultaneous detection and quantification of BMAA, its isomers, and the major MCs in a single analysis; therefore, multiple analyses are required to assess the toxic load of a sample. Here, we present a newly developed and validated method for the detection and quantification of BMAA, 2,4-DAB, AEG, MC-LR, MC-RR, and MC-YR using RP LC-MS/MS.

View Article and Find Full Text PDF

Toxic heavy metals have been the focus of many investigations into chronic kidney disease of unknown aetiology (CKDu) within Sri Lanka. It has been hypothesised that exposure to nephrotoxic arsenic, cadmium and lead could play a role in the development of CKDu, and these metals have previously been found in unsafe concentrations in Sri Lankan rice. Traditional varieties of Sri Lankan rice remain popular due to their perceived health benefits, but their uptake of trace and toxic heavy metals remained unexplored.

View Article and Find Full Text PDF

Due to the complexity of lipids in nature, the use of in silico generated spectral libraries to identify lipid species from mass spectral data has become an integral part of many lipidomic workflows. However, many in silico libraries are either limited in usability or their capacity to represent lipid species. Here, we introduce Lipid Spectrum Generator, an open-source in silico spectral library generator specifically designed to aid in the identification of lipids in liquid chromatography-tandem mass spectrometry analysis.

View Article and Find Full Text PDF

Non-protein amino acids (NPAAs) are a large class of amino acids (AAs) that are not genetically encoded for translation into proteins. The analysis of NPAAs can provide crucial information about cellular uptake and/or function, metabolic pathways, and potential toxicity. β-methylamino-L-alanine (BMAA) is a neurotoxic NPAA produced by various algae species and is associated with an increased risk for neurodegenerative diseases, which has led to significant research interest.

View Article and Find Full Text PDF

is a widespread cyanobacteria capable of producing hepatotoxic microcystins. Understanding the environmental factors that influence its growth and toxin production is essential to managing the negative effects on freshwater systems. Some micronutrients are important cofactors in cyanobacterial proteins and can influence cyanobacterial growth when availability is limited.

View Article and Find Full Text PDF

LC-MS/MS method development for native amino acid detection can be problematic due to low ionisation efficiencies, in source fragmentation, potential for cluster ion formation and incorrect application of chromatography techniques. This has led to the majority of the scientific community derivatising amino acids for more sensitive analysis. Derivatisation has several benefits including reduced signal-to-noise ratios, more efficient ionisation, and a change in polarity, allowing the use of reverse phase chromatography.

View Article and Find Full Text PDF

The cyanobacterial non-protein amino acid α-amino-β-methylaminopropionic acid, more commonly known as BMAA, was first discovered in the seeds of the ancient gymnosperm Cycad circinalis (now Cycas micronesica Hill). BMAA was linked to the high incidence of neurological disorders on the island of Guam first reported in the 1950s. BMAA still attracts interest as a possible causative factor in amyotrophic lateral sclerosis (ALS) following the identification of ALS disease clusters associated with living in proximity to lakes with regular cyanobacterial blooms.

View Article and Find Full Text PDF

In contrast to mammalian cells, bacteria such as Escherichia coli have been shown to display tolerance towards the neurotoxin β-methylamino-l-alanine (BMAA) suggesting that these prokaryotes possess a way to metabolise BMAA or its products, resulting in their export, degradation, or detoxification. Single gene deletion mutants of E. coli K-12 with inactivated amino acid biosynthesis pathways were treated with 500 μg/ml BMAA and the resulting growth was monitored.

View Article and Find Full Text PDF

Proteinopathies are diseases caused by factors that affect proteoform conformation. As such, a prevalent hypothesis is that the misincorporation of noncanonical amino acids into a proteoform results in detrimental structures. However, this hypothesis is missing proteomic evidence, specifically the detection of a noncanonical amino acid in a peptide sequence.

View Article and Find Full Text PDF

In order to study the toxicity of the cyanobacterial non-protein amino acids (NPAAs) L-β-N-methylamino-L-alanine (BMAA) and its structural isomer L-2,4-diaminobutyric acid (DAB) in the forage crop plant alfalfa (Medicago sativa), seedlings were exposed to NPAA-containing media for four days. Root growth was significantly inhibited by both treatments. The content of derivatised free and protein-bound BMAA and DAB in seedlings was then analysed by LC-MS/MS.

View Article and Find Full Text PDF

β-methylamino-L-alanine (BMAA) is a non-protein amino acid that has been implicated as a risk factor for motor neurone disease (MND). BMAA is produced by a wide range of cyanobacteria globally and by a small number of marine diatoms. BMAA is commonly found with two of its constitutional isomers: 2,4-diaminobutyric acid (2,4-DAB), and N-(2-aminoethyl)glycine (AEG).

View Article and Find Full Text PDF

The accurate quantification of changes in the abundance of proteins is one of the main applications of proteomics. The maintenance of accuracy can be affected by bias and error that can occur at many points in the experimental process, and normalization strategies are crucial to attempt to overcome this bias and return the sample to its regular biological condition, or normal state. Much work has been published on performing normalization on data post-acquisition with many algorithms and statistical processes available.

View Article and Find Full Text PDF