98%
921
2 minutes
20
This paper is a call to action. By publishing concurrently across journals like an emergency bulletin, we are not merely making a plea for awareness about climate change. Instead, we are demanding immediate, tangible steps that harness the power of microbiology and the expertise of researchers and policymakers to safeguard the planet for future generations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554774 | PMC |
http://dx.doi.org/10.1038/s41522-024-00591-9 | DOI Listing |
Environ Res
September 2025
Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur-713209, India. Electronic address:
The coexistence of antibiotics (AB) and microplastics (MP) in the environment has led to the formation of AB-MP complexes, posing several ecological and public health challenges. This review explores the mechanisms driving AB adsorption onto MPs, including diverse interactions (hydrophobic interactions, hydrogen bonding, π-π stacking, and ionic exchange) and their role in maintaining the persistence and mobility of the complexes. These complexes have been reported to serve as reservoirs/vectors for antimicrobial resistance (AMR), disrupt microbial communities, and enhance the bioavailability of ABs, thus posing various threats affecting biodiversity health and ecosystem stability.
View Article and Find Full Text PDFAdv Drug Deliv Rev
September 2025
J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States; Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States. Electronic address:
The human microbiome plays a critical role in health and disease. Disruptions in microbiota composition or function have been implicated not only as markers but also as drivers of diverse pathologies, creating opportunities for targeted microbiome interventions. Advancing these therapies requires experimental models that can unravel the complex, bidirectional interactions between human tissue and microbial communities.
View Article and Find Full Text PDFWater Res
September 2025
Key Lab of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Co
As an abundant natural mineral, pyrite presents a highly promising solution for sustainable groundwater remediation, owing to its distinct electron transfer properties. However, research on pyrite's remediation capabilities has often focused on isolated mechanisms, neglecting the complex interplay between the mineral's properties, the environmental matrix, and interfacial processes, thereby limiting comprehensive understanding of its efficacy and constraints. Herein, an integrated "mechanism-application-sustainability" framework is proposed to bridge this knowledge gap.
View Article and Find Full Text PDFEcotoxicol Environ Saf
September 2025
Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai 201403, China. Electronic address:
Soil antibiotic pollution is a global concern. It has been confirmed that straw or earthworm can enhance microbial degradation of antibiotics in soil. However, in the C/N transformation processes of soil ecosystems, straw and earthworms are closely interconnected.
View Article and Find Full Text PDFJ Hazard Mater
August 2025
School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China. Electronic address:
Residues of veterinary antibiotics such as tylosin in soils can induce selective pressure on indigenous soil microbes and increase the dissemination risk of antibiotic resistance genes (ARGs) by horizontal gene transfer (HGT), which poses a serious threat to both soil and public health. While conventional bioremediation methods face challenges in efficiency and stability, enzyme-based approaches offer promising alternatives. This study developed a novel biochar-immobilized tylosin-degrading enzyme (BIE) system to simultaneously address tylosin contamination and antibiotic resistance gene (ARG) proliferation in agricultural soils.
View Article and Find Full Text PDF