98%
921
2 minutes
20
In the big data era, mode division multiplexing, as a technology for extended channel capacity, demonstrates potential in enhancing parallel data processing capability. Consequently, developing a compact, high-performance mode converter through efficient design methods is an urgent requirement. However, traditional design methodologies for these converters face significant computational complexities and inefficiencies. Addressing this challenge, this paper introduces a novel topology optimization design method for mode converters employing a Dynamic Adjustment of Update Rate (DAUR). This approach markedly reduces computational overhead, accelerating the design process while ensuring high performance and compactness. As a proof-of-concept, an ultra-compact dual-mode converter was designed. The DAUR method demonstrated an 80% reduction in computational time compared to traditional methods, while maintaining a compact design (only 1.4 μm × 1.4 μm) and an insertion loss under 0.68 dB across a wavelength range of 1525 nm to 1575 nm. Meanwhile, simulated inter-mode crosstalk remained below - 24 dB across a 40 nm bandwidth. A comprehensive comparison with traditional inverse design algorithms is presented, demonstrating our method's superior efficiency and effectiveness. Our findings suggest that DAUR not only streamlines the design process but also facilitates exploration into more complex micro-nano photonic structures with reduced resource investment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11544020 | PMC |
http://dx.doi.org/10.1038/s41598-024-76691-5 | DOI Listing |
HardwareX
September 2025
Universidad Nacional de Colombia, Facultad de Minas, Grupo GITA, Cra. 80#65-223, Colombia.
This paper presents the development of a transmitter that transforms intermittent glucose sensors (isCGM) into a continuous and real-time glucose monitoring system (c-rtCGM), a key component in automated insulin delivery systems. The transmitter enhances the capabilities of conventional intermittent sensors by leveraging Near Field Communication (NFC) technology to capture raw glucose value and automatically transmit it via Bluetooth Low Energy (BLE-Bluetooth 4.2 Dual-Mode) to a smart device every five minutes.
View Article and Find Full Text PDFAdv Healthc Mater
September 2025
Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
Although cold atmospheric plasma is a promising therapeutic technique for tumor immunotherapy via reactive oxygen and nitrogen species (RONS), the challenges associated with the generation and delivery of these RONS hamper clinical adoption. Herein, a dual-mode hybrid discharge plasma-activated sodium alginate hydrosols (PAH) is proposed to enhance the antitumor immune response. Gaseous highly reactive RONS are generated by dual-mode hybrid plasma produced by mixed O and NO modes, which are converted into aqueous RONS in PAH via gas-liquid reactions between plasma and hydrosols.
View Article and Find Full Text PDFAnal Chem
September 2025
State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Second Provincial General Hospital, The Fifth Affiliated Hospital, Guangzhou Red Cross Hospital, College of Pharmacy, Jinan University, Guangzhou 510632, China.
Rapid and precise detection of () is crucial for early diagnosis, treatment of infectious ailments, and controlling outbreaks. Herein, we present a rapid, streamlined, and sensitive method for screening based on a hollow copper/platinum interspersed graphene oxide nanosheets (Cu/Pt-GO)-mediated cascade responsiveness strategy. The Cu/Pt-GO nanozymes were proposed to catalyze the colorless 3,3',5,5'-tetramethylbenzidine (TMB) to colored oxidized TMB (oxTMB) with enhanced SERS signals, achieving colorimetric/SERS dual-model detection.
View Article and Find Full Text PDFJCI Insight
September 2025
Department of Internal Medicine, The University of Texas Medical Branch, Galveston, United States of America.
Maternal low thyroxine (T4) serum levels during the first trimester of pregnancy correlate with cerebral cortex volume and mental development of the progeny, but why neural cells during early fetal brain development are vulnerable to maternal T4 levels remains unknown. In this study, using iPSCs obtained from a boy with a loss-of-function mutation in MCT8-a transporter previously identified as critical for thyroid hormone uptake and action in neural cells-we demonstrate that thyroid hormones induce transcriptional changes that promote the progression of human neural precursor cells along the dorsal projection trajectory. Consistent with these findings, single-cell, spatial, and bulk transcriptomics from MCT8-deficient cerebral organoids and cultures of human neural precursor cells underscore the necessity for optimal thyroid hormone levels for these cells to differentiate into neurons.
View Article and Find Full Text PDFLab Chip
September 2025
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.
Photonic crystal slow light waveguides present a breakthrough in the manipulation of optical signals and enhancing the interaction between light and matter. In particular, two-dimensional (2D) photonic crystal waveguides (PCWs) on silicon photonic chips hold promise in improving the sensitivity of on-chip gas sensors. However, the development of the gas sensors based on 2D PCWs suffers from a high propagation loss and a narrow slow light bandwidth.
View Article and Find Full Text PDF