Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Reducing agents have been frequently utilized as electron donors for Fe(II) generation to resolve the sluggish Fe(III) reduction in Fenton-like reactions, while their irreversible consumption necessitates a robust catalytic system that utilizes green electron donors such as HO. In this study, we used annealed nanodiamonds (NDs) as a collection of model catalysts with different sp/sp ratios to investigate the roles of the molecular structure in boosting the Fenton-like reactions. The annealed NDs acted as an electron mediator to transfer electrons from HO to surface-adsorbed Fe(III) for Fe(II) generation as well as an electron donor for direct Fe(III) reduction, driving Fe(II)-catalyzed HO decomposition to produce massive hydroxyl radicals, demonstrating potential in the real-water matrixes. Galvanic cell experiments show that the contribution ratio of mediation and electron donation is 2.75:1, indicating that the majority of Fe(II) was generated through electron transfer from HO. Additionally, different carbon configurations (sp-sp-sp hybridizations) were compared to assess the molecular structure-performance relationships in Fe(III) reduction. This study unveils the distinct functions of carbon molecular structures in driving Fe(III)/Fe(II) circulation and provides insights into sustainable Fenton oxidation driven by metal-free catalysis.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.4c04733DOI Listing

Publication Analysis

Top Keywords

feiii reduction
12
feiii/feii circulation
8
electron donors
8
feii generation
8
fenton-like reactions
8
electron
6
nature molecular
4
molecular hybridizations
4
hybridizations nanodiamonds
4
nanodiamonds boosted
4

Similar Publications

Ni-Mediated High-Spin Iron(III) for Boosting Electrocatalytic NO to Oxime Conversion.

Angew Chem Int Ed Engl

September 2025

Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, LIFM, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, China.

Oximes serve as indispensable intermediates in synthetic chemistry, owing to their distinctive C═N─OH structure, conferring highly versatile reactivity. Synthesis of oxime via the electrochemical method has potential advantages, accompanied by the upgrading of industrialization. Herein, we propose a novel strategy by introducing nickel (Ni) mediation to obtain high-spin iron (Fe)(III) in phthalocyanine structure for synthesizing glyoxylate oxime via electrocatalytic nitric oxide (NO) coupling with keto acid.

View Article and Find Full Text PDF

Density functional theory (DFT) is the standard approach for modeling MIL-101(Fe) and related Fe-based metal-organic frameworks, typically assuming a ferromagnetic high-spin configuration. However, this widely adopted approach overlooks a key electronic feature: Spin frustration in the triangular -O) nodes. Using flip-spin, broken-symmetry DFT, we identify the true ground state as an antiferromagnetic state that standard DFT fails to capture.

View Article and Find Full Text PDF

Rice Root Iron Plaque as a Mediator to Stimulate Methanotrophic Nitrogen Fixation.

Environ Sci Technol

September 2025

Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

Iron plaque (IP) on rice root surfaces has been extensively documented as a natural barrier that effectively reduces contaminant bioavailability and accumulation. However, its regulatory mechanisms in rhizospheric methane oxidation and biological nitrogen fixation (BNF) remain elusive. This study reveals a previously unrecognized function of IP: mediating methanotrophic nitrogen fixation through coupled aerobic methane oxidation and IP reduction (Fe-MOX).

View Article and Find Full Text PDF

Unveiling the effect of Fe(III) and sulfate on ammonium oxidation under anaerobic condition: interactions and extracellular electron transfer.

Water Res

August 2025

Guangzhou Landscape Architecture Group Co., Ltd., Guangzhou 510000, PR China; Guangzhou Municipal Construction Group Co., Ltd., Guangzhou 510030, PR China.

Enhanced ammonium (10.6 - 14.7%) and total inorganic nitrogen (TIN, 4.

View Article and Find Full Text PDF

Accelerating iron redox cycling via acetate modification: a ligand engineering for sustainable fenton-like oxidation.

Water Res

September 2025

State Key Laboratory of Soil Pollution Control and Safety, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Future Environment Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China. Electronic address:

Accelerating the rate-limiting surface Fe(III)/Fe(II) redox cycling is pivotal for efficient iron-mediated Fenton-like decontamination, yet conventional reductants (e.g., toxic hydroxylamine, thiosulfate) suffer from secondary toxicity, self-quenching, and heavy metal leaching.

View Article and Find Full Text PDF