98%
921
2 minutes
20
Targeting signaling pathways that drive cancer cell migration or proliferation is a common therapeutic approach. A popular experimental technique, the scratch assay, measures the migration and proliferation-driven cell closure of a defect in a confluent cell monolayer. These assays do not measure dynamic effects. To improve analysis of scratch assays, we combine high-throughput scratch assays, video microscopy, and system identification to infer partial differential equation (PDE) models of cell migration and proliferation. We capture the evolution of cell density fields over time using live cell microscopy and automated image processing. We employ weak form-based system identification techniques for cell density dynamics modeled with first-order kinetics of advection-diffusion-reaction systems. We present a comparison of our methods to results obtained using traditional inference approaches on previously analyzed 1-dimensional scratch assay data. We demonstrate the application of this pipeline on high throughput 2-dimensional scratch assays and find that low levels of trametinib inhibit wound closure primarily by decreasing random cell migration by approximately 20%. Our integrated experimental and computational pipeline can be adapted for quantitatively inferring the effect of biological perturbations on cell migration and proliferation in various cell lines.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11537331 | PMC |
Cancer Immunol Immunother
September 2025
Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China.
Objective: CircRNAs are involved in cancer progression. However, their role in immune escape in non-small cell lung cancer (NSCLC) remains poorly understood.
Methods: This study employed RIP-seq for the targeted enrichment of circRNAs, followed by Western blotting and RT-qPCR to confirm their expression.
Acta Pharmacol Sin
September 2025
Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
Non-small cell lung cancer (NSCLC) is an aggressive malignancy with a poor prognosis. Abnormal expression of focal adhesion kinase (FAK) is closely linked to NSCLC progression, highlighting the need for effective FAK inhibitors in NSCLC treatment. In this study we conducted high-throughput virtual screening combined with cellular assays to identify potential FAK inhibitors for NSCLC treatment.
View Article and Find Full Text PDFBrain Res
September 2025
Department of Pathology, Xinxiang Medical University, Xinxiang, China. Electronic address:
Glioma is a malignant brain tumor in which the lncRNA ENSG00000232259 is significantly upregulated. Bioinformatics predictions suggest that it may encode the polypeptide ENSG00000232259-ORF, but the biological function and mechanisms of this polypeptide in glioma remain unclear. Gene expression and correlation analyses were conducted using the GEPIA database, combined with GetORF to predict the polypeptide-coding potential, and Western blot was employed to validate the expression of ENSG00000232259-ORF.
View Article and Find Full Text PDFAdv Med Sci
September 2025
Department of Biology, Lund University, Lund, Sweden.
Purpose: Ovarian cancer ranks as a gynecological malignancy with poor prognosis, specifically if detected late. Primary treatment includes cytoreductive surgery and adjuvant chemotherapy with curative intent. Local anesthetics (LA) administered in the perioperative period may potentially impact patient outcome by several mechanisms.
View Article and Find Full Text PDFExp Eye Res
September 2025
Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai, 200080, China. Electronic address:
Purpose: A disintegrin-like and metalloprotease with thrombospondin type 1 motif 13 (ADAMTS13) has been found to increase and to be associated with diabetic retinopathy (DR). The study aimed to identify the role of ADAMTS13 in the pathogenesis of angiogenesis in DR.
Methods: ADAMTS13 expression was evaluated in human retinal microvascular endothelial cells (HRMVECs), vitreous sample from patients with proliferative DR and diabetic mice model using western blot, real time-quantitative PCR, immunofluorescence and ELISA.