Dendritic cell mineralocorticoid receptor controls blood pressure by regulating T helper 17 differentiation: role of the Plcβ1/4-Stat5-NF-κB pathway.

Eur Heart J

Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background And Aims: Dendritic cells (DCs) are closely related to blood pressure (BP) regulation. Mineralocorticoid receptor (MR) is an important drug target for antihypertensive treatment. However, the role of DC MR in the pathogenesis of hypertension has not been fully elucidated. This study aimed to determine the role of DC MR in BP regulation and to explore the mechanism.

Methods: Renal biopsy and peripheral blood samples were collected from hypertensive patients (HTN) for immunostaining and flow cytometry. Dendritic cell MR knockout (DCMRKO) mice, DC MR overexpressing (DCMROV) mice, DCMROV/IL-17A knockout (DCMROV/IL-17AKO) mice and finerenone-treated C57BL/6 mice were infused with angiotensin II (Ang II) to establish hypertensive models. Western blotting, chromatin immunoprecipitation, co-immunoprecipitation, and in vivo DC depletion or adoptive transfer were used to delineate the functional importance of DC MR in hypertension development.

Results: Mineralocorticoid receptor antagonists (spironolactone and finerenone) suppressed DC aggregation and activation, as well as hypertension in HTN and mice. Compared with littermate control (LC) mice, dendritic cell MR knockout mice had strikingly decreased BPs and attenuated target organ damage after Ang II infusion. Flow cytometry showed that DC MR deficiency mitigated Ang II-induced DC activation and T helper 17 (Th17) cell differentiation. RNA sequencing revealed that MR-deficient DCs had elevated expression of Plcβ1 and Plcβ4, knockdown of which reversed the inhibitory effect of MR deficiency on DC activation and Th17 differentiation. Adoptive transfer of MR-deficient DCs protected Ang II-induced hypertension, whereas knockdown of Plcβ1/4 eliminated the protective effects. At the molecular level, MR negatively regulated Plcβ1/4, which recruited SHP-1 to inactivate of Stat5 activity, resulting in enhanced NF-κB activation and Th17 polarization. Furthermore, DCMROV mice manifested more elevated BPs and target organ damage than control mice after Ang II infusion, and these differences were abolished in DCMROV/IL-17AKO mice. Finally, MR antagonists decreased the aggregation of Th17 in HTN and mice.

Conclusions: Dendritic cell MR plays important roles in the pathogenesis of hypertension by regulating Th17 through Plcβ1/4-Stat5-NF-κB signalling, and blockade of DC MR is beneficial for treating hypertension.

Download full-text PDF

Source
http://dx.doi.org/10.1093/eurheartj/ehae670DOI Listing

Publication Analysis

Top Keywords

dendritic cell
16
mineralocorticoid receptor
12
mice
10
blood pressure
8
pathogenesis hypertension
8
flow cytometry
8
cell knockout
8
dcmrov mice
8
dcmrov/il-17ako mice
8
adoptive transfer
8

Similar Publications

Chimeric antigen receptor (CAR) therapies have demonstrated remarkable clinical efficacy in hematological malignancies, validating their therapeutic potential. However, challenges such as therapeutic resistance and limited accessibility hinder their broader application. To overcome these limitations, alternative CAR-based cell therapies, including CAR-Natural Killer (CAR-NK), CAR-macrophage (CAR-M), and CAR-dendritic cell (CAR-DC) therapies, have been proposed.

View Article and Find Full Text PDF

IL12-based phototherapeutic nanoparticles through remodeling tumor-associated macrophages combined with immunogenic tumor cell death for synergistic cancer immunotherapy.

Biomater Sci

September 2025

Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, The Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China.

Various cancer therapeutic strategies have been designed for targeting tumor-associated macrophages (TAMs), but TAM reprogramming-based monotherapy is often clinically hindered, likely due to the lack of a coordinated platform to initiate T cell-mediated immunity. Herein, we fabricated reactive oxygen species (ROS)-responsive human serum albumin (HSA)-based nanoparticles (PEG/IL12-IA NPs) consisting of indocyanine green (ICG), arginine (Arg), and interleukin 12 (IL12). Upon laser irradiation, the nanoparticles were found to be able to dissociate, thus facilitating the release of IL12.

View Article and Find Full Text PDF

The effect of CD40 agonist antibody therapy on the pancreatic cancer microenvironment.

Naunyn Schmiedebergs Arch Pharmacol

September 2025

Department of Gastroenterology, Jinhua Central Hospital, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, Zhejiang, China.

The fourth leading cause of cancer-related fatalities in the USA is pancreatic ductal adenocarcinoma (PDAC), a particularly deadly illness that is resistant to immunotherapy. One of the Main Obstacles in cancer research is developing better treatments for PDAC, which has the lowest 5-year survival rate of any malignancy. Anti-CTLA-4, anti-PD-L1, and anti-PD-1 immune checkpoint blockade medications also have poor results in these patients, which may indicate the presence of other immunosuppressive mechanisms in the pancreatic tumor microenvironment (TME).

View Article and Find Full Text PDF

Purpose: To characterize corneal immune cell morphodynamics and nerve features, and define the in vivo immune landscape in older adults with human immunodeficiency virus (HIV) receiving antiretroviral therapy (ART), relative to healthy age-matched adults.

Methods: In this cross-sectional study, 16 HIV-positive individuals receiving ART and 15 age-matched controls underwent ocular surface examinations and functional in vivo confocal microscopy (Fun-IVCM). Time-lapsed videos were created to analyze corneal immune cells (T cells, dendritic cells [DCs], macrophages).

View Article and Find Full Text PDF

Background: Vaccination is a key strategy to reduce infectious disease mortality. In pediatric heart transplant recipients (HTRs), the use of immunosuppressive therapy weakens immune responses, increasing the risk of viral infections. This study aimed to evaluate the immunogenicity of hepatitis B virus (HBV) revaccination in this vulnerable population.

View Article and Find Full Text PDF