Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lanmic.2024.101014DOI Listing

Publication Analysis

Top Keywords

saliva reliable
4
reliable non-invasive
4
non-invasive specimen
4
specimen detecting
4
detecting monitoring
4
monitoring mycobacterium
4
mycobacterium leprae
4
saliva
1
non-invasive
1
specimen
1

Similar Publications

Introduction: The aim of this study was to compare the performance of different clinical specimens-nasopharyngeal (NP) swabs collected by healthcare professionals (HCP-NP), self-collected nasal swabs (Sc-N), and saliva samples (S)-in diagnostic tests for investigating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA and influenza A/B RNA.

Methodology: These clinical samples were collected from 404 symptomatic cases and tested with the SARS-CoV-2 and influenza A/B RNA tests on the cobas 6800 System of Roche Molecular Systems (Roche Molecular Systems, Pleasanton, USA). The SARS-CoV-2 or influenza virus infection status was determined for all patients based on the predefined criteria and corresponding algorithms.

View Article and Find Full Text PDF

Evaluation of a nucleic acid preservation protocol for microbiome studies involving samples from the oral cavity.

J Microbiol Methods

September 2025

Dynamics of Respiratory Infections Group, Helmholtz Centre for Infection Research-HZI Braunschweig, Braunschweig, Germany; Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, German Center for Lung Research (DZL), BREATH, Hannover, Germany.

Purpose: The accuracy of oral microbiome research depends significantly on specimen sampling protocols, as well as their storage and preservation. Traditional methods, such as freezing, may not only involve logistical hurdles but can also impact the quality of microbial data, leading to difficulties in the comparability between different studies. This study evaluates the effectiveness of the room temperature nucleic acid preservation protocol using DNA/RNA Shield buffer as compared to standard freezing in preserving oral microbial communities over the course of 7 days.

View Article and Find Full Text PDF

A Versatile DNAzyme-Amplified Protease-Sensing Platform for Accurate Diagnosis of SARS-CoV-2 and Reliable Classification of Colorectal Cancer.

Angew Chem Int Ed Engl

September 2025

College of Chemistry and Molecular Sciences, Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430072, P.R. China.

Peptide-based biosensors are widely used for in vitro detection of protease activity but often suffer from the limited sensitivity, poor accuracy, and incompatibility with point-of-care testing (POCT) devices. Herein, we developed a versatile deoxyribozyme (DNAzyme)-amplified protease-sensing (DP) platform that integrates the positively charged oligopeptides with a negatively charged DNAzyme biocatalyst for highly-sensitive protease detection. The system leverages the electrostatic peptide-DNAzyme interactions to inhibit DNAzyme catalytic activity, which is reactivated upon the protease-triggered peptide hydrolysis, thus enabling an efficient signal amplification via the successive cleavage of DNAzyme substrate.

View Article and Find Full Text PDF

Background: The World Health Organization recommends at-home management of mild COVID-19. While our preliminary evaluation provided evidence for saline nasal irrigation (SNI) and gargling in COVID-19, an update and risk-benefit assessment for self-care in Omicron infection is warranted, from treatment and preparedness perspectives, as new SARS-CoV-2 variants continuously emerge, while symptoms overlap with those of common colds and other upper respiratory tract infections.

Methods: Systematic literature searches for preclinical and clinical studies involving Omicron infection and saline, bias assessment, and review of outcomes (benefits, risks).

View Article and Find Full Text PDF

Accurate and accessible glucose detection is essential for clinical diagnostics, point-of-care testing, food safety, and biosensing applications. In this study, we present a simple, scalable, and dual-mode glucose sensor that integrates commercial potassium permanganate (KMnO) with glucose oxidase to enable sensitive and selective detection in the clinically critical range of 1-5 mM. Leveraging the strong oxidative power and distinct optical characteristics of KMnO, the sensor operates via both absorbance measurement at 400 nm and visual colorimetric analysis, displaying a clear color change from purple to pink and yellow upon reaction with glucose.

View Article and Find Full Text PDF