Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Interactions between excitatory and inhibitory neurons are critical to computations in cortical circuits but their organization is difficult to assess with standard electrophysiological approaches. Within the medial entorhinal cortex, representation of location by grid and other spatial cells involves circuits in layer 2 in which excitatory stellate cells interact with each other via inhibitory parvalbumin expressing interneurons. Whether this connectivity is structured to support local circuit computations is unclear. Here, we introduce strategies to address the functional organization of excitatory-inhibitory interactions using crossed Cre- and Flp-driver mouse lines to direct targeted presynaptic optogenetic activation and postsynaptic cell identification. We then use simultaneous patch-clamp recordings from postsynaptic neurons to assess their shared input from optically activated presynaptic populations. We find that extensive axonal projections support spatially organized connectivity between stellate cells and parvalbumin interneurons, such that direct connections are often, but not always, shared by nearby neurons, whereas multisynaptic interactions coordinate inputs to neurons with greater spatial separation. We suggest that direct excitatory-inhibitory synaptic interactions may operate at the scale of grid cell clusters, with local modules defined by excitatory-inhibitory connectivity, while indirect interactions may coordinate activity at the scale of grid cell modules.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530233PMC
http://dx.doi.org/10.7554/eLife.92854DOI Listing

Publication Analysis

Top Keywords

stellate cells
12
scale grid
12
grid cell
12
synaptic interactions
8
cells parvalbumin
8
parvalbumin interneurons
8
medial entorhinal
8
entorhinal cortex
8
cell clusters
8
interactions coordinate
8

Similar Publications

Liver fibrosis, which eventually leads to cirrhosis, is characterized by excessive accumulation of type I collagen (COL1A), mainly derived from activated hepatic stellate cells (HSCs). Currently, there is no clinical treatments that can directly address this condition. The objectives of this study were to identify a compound that can suppress HSC activation and elucidate the molecular mechanism underlying its action.

View Article and Find Full Text PDF

HMGB1 contributes to pancreatic fibrosis by regulating TLR4-mediated autophagy and the NLRP3 inflammasome pathway in chronic pancreatitis.

Exp Cell Res

September 2025

Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, 300100, China; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100,

The characteristic pathological change in chronic pancreatitis (CP) is pancreatic fibrosis. In the early stages of CP development, injured acinar cells induce the infiltration of inflammatory cells, followed by pancreatic stellate cell (PSC) activation. Activated PSC induce the deposition of extracellular matrix (ECM) and promote the development of pancreatic fibrosis.

View Article and Find Full Text PDF

A novel extracellular mannan from Bacillus velezensis ameliorates metabolic-associated fatty liver disease by modulating gut microbiota in mice model.

Carbohydr Polym

November 2025

State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China. Electronic address:

Metabolic associated fatty liver disease (MAFLD) is a globally recognized chronic metabolic disorder characterized by lipid metabolism abnormalities. Accumulating evidence indicates that exopolysaccharides (EPS) could modulate the gut microbiota structure and function to prevent and treat MAFLD. Herein, a novel EPS designated BVP1 was isolated from Bacillus velezensis CGMCC 24752.

View Article and Find Full Text PDF

Dark tea ameliorates liver fibrosis via FXR/TGR5-mediated intestinal permeability and liver sinusoidal capillarization.

J Ethnopharmacol

September 2025

Key Laboratory for Traditional Chinese Korean Medicine Research (State Ethnic Affairs), College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China. Electronic address:

Ethnopharmacological Relevance: Dark tea, a post-fermented tea, has traditionally been used to regulate liver disorders. As an ethnomedicinal plant, its efficacy in alleviating chronic liver disease has been demonstrated.

Aim Of The Study: This study explored the protective effect and potential mechanism of dark tea extract (DTE) against hepatic fibrosis.

View Article and Find Full Text PDF

Fangchinoline attenuates hepatic fibrosis by regulating taurine metabolism and oxidative stress.

Front Pharmacol

August 2025

School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.

Background: Hepatic fibrosis emerges as a pathological hallmark in the pathogenesis of chronic hepatopathies. is a traditional Chinese herb used to treat liver disease. However, the anti-hepatic fibrosis effect of fangchinoline (FAN), an active ingredient of , has not been reported.

View Article and Find Full Text PDF