98%
921
2 minutes
20
Iron is a crucial element integral to various fundamental biological molecular mechanisms, including magnetosome biogenesis in magnetotactic bacteria (MTB). Magnetosomes are formed through the internalization and biomineralization of iron into magnetite crystals. However, the interconnected mechanisms by which MTB uptake and regulate intracellular iron for magnetosome biomineralization remain poorly understood, particularly at the single-cell level. To gain insights we employed a holistic multiscale approach, .., from elemental iron species to bacterial populations, to elucidate the interplay between iron uptake dynamics and magnetosome formation in MSR-1 under near-native conditions. We combined a correlative microscopy approach integrating light and X-ray tomography with analytical techniques, such as flow cytometry and inductively coupled plasma spectroscopy, to evaluate the effects of iron and oxygen availability on cellular growth, magnetosome biogenesis, and intracellular iron pool in MSR-1. Our results revealed that increased iron availability under microaerobic conditions significantly promoted the formation of longer magnetosome chains and increased intracellular iron uptake, with a saturation point at 300 μM iron citrate. Beyond this threshold, additional iron did not further extend the magnetosome chain length or increase total intracellular iron levels. Moreover, our work reveals (i) a direct correlation between the labile Fe pool size and magnetosome content, with higher intracellular iron concentrations correlating with increased magnetosome production, and (ii) the existence of an intracellular iron pool, distinct from magnetite, persisting during all stages of biomineralization. This study offers insights into iron dynamics in magnetosome biomineralization at a single-cell level, potentially enhancing the industrial biomanufacturing of magnetosomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11565563 | PMC |
http://dx.doi.org/10.1021/acsami.4c15975 | DOI Listing |
Acta Parasitol
September 2025
Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
Purpose: This study aimed to identify and analyze the role of Ferric reductase inBlastocystis sp. subtype 2 (ST2) and explore the relationship between the parasite and iron metabolism.
Methods: The location of Ferric reductase in Blastocystis sp.
Biol Trace Elem Res
September 2025
State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
Ferroptosis is a form of iron-regulated cell death that plays a critical role in various aspects of female reproductive system development. These processes include the normal estrous cycle, ovarian formation, follicular maturation, ovulation, and pregnancy, all of which are essential for maintaining reproductive health in female animals. However, excessive iron leads to the accumulation of reactive oxygen species within cells, disrupting intracellular redox balance, inducing mitophagy, membrane rupture, and lipid peroxidation, which can damage tissues and cells, ultimately resulting in ferroptosis.
View Article and Find Full Text PDFmBio
September 2025
Department of Microbiology & Immunology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan.
Fatty acid-binding protein 4 (FABP4) is a cytosolic lipid chaperone predominantly expressed in adipocytes. It has been shown that targets adipose tissues and resides in adipocytes. However, how manipulates adipocytes to redirect nutrients for its benefit remains unknown.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
September 2025
Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, PR China.
Gastric cancer (GC) is the third leading cause of cancer mortality globally, often presenting with insidious symptoms that lead to late-stage diagnoses, underscoring the critical need for innovative diagnostic and therapeutic strategies. One such avenue is the exploration of ferroptosis, a regulated form of cell death implicated in various pathological conditions and malignancies. In this study, we demonstrate that brucine, an alkaloid derived from Strychnos nux-vomica, exerts significant antitumor effects on GC cells both in vitro and in vivo.
View Article and Find Full Text PDFFront Oncol
August 2025
The First Clinical School of Nanjing University of Chinese Medicine, Nanjing, China.
Ferroptosis is a regulated, non-apoptotic form of cell death marked by the accumulation of iron-dependent lipid peroxides. This process causes rapid rupture of the plasma membrane and the release of intracellular contents. Ferroptosis acts as an intrinsic tumor-suppressive mechanism.
View Article and Find Full Text PDF