Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Climate change-driven drought events are becoming unescapable in an increasing number of areas worldwide. Understanding how plants are able to adapt to these changing environmental conditions is a non-trivial challenge. Physiologically, improving a plant's intrinsic water use efficiency (WUEi ) will be essential for plant survival in dry conditions. Physically, plant adaptation and acclimatisation are constrained by a plant's anatomy. In other words, there is a strong link between anatomical structure and physiological function. Former research predominantly focused on using 2D anatomical measurements to approximate 3D structures based on the assumption of ideal shapes, such as spherical spongy mesophyll cells. As a result of increasing progress in 3D imaging technology, the validity of these assumptions is being assessed, and recent research has indicated that these approximations can contain significant errors. We suggest to invert the workflow and use the less common 3D assessments to provide corrections and functions for the more widely available 2D assessments. By combining these 3D and corrected 2D anatomical assessments with physiological measurements of WUEi , our understanding of how a plant's physical adaptation affects its function will increase and greatly improve our ability to assess plant survival.

Download full-text PDF

Source
http://dx.doi.org/10.1071/FP24150DOI Listing

Publication Analysis

Top Keywords

intrinsic water
8
water efficiency
8
plant survival
8
linking structure
4
structure function
4
function connection
4
connection mesophyll
4
mesophyll structure
4
structure intrinsic
4
efficiency climate
4

Similar Publications

Magnetic-field enhancement of the oxygen evolution reaction (OER) represents a promising route toward more efficient alkaline water electrolyzers, yet its origin remains debated due to overlapping effects of mass transport and reaction kinetics. Here, we present a general experimental strategy that employs strong forced convection to suppress uncontrolled transport arising from natural diffusion and magnetohydrodynamic (MHD) flows. Using polycrystalline Au electrodes, we show that this approach resolves subtle OER variations under controlled flow and field conditions.

View Article and Find Full Text PDF

Thermally stable and highly wetted asymmetric porous nanocellulose/poly(m-phenylene isophthalamide) composite separators for high-performance lithium-ion batteries.

Int J Biol Macromol

September 2025

Jiangsu Provincial Key Lab for The Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.

Aramid films are potential separator candidates for high-safety lithium-ion batteries (LIBs) due to their inherent flame retardancy and outstanding thermal stability. However, both weak liquid electrolyte wettability and poor mechanical properties of aramid separators for lithium-ion batteries result in low ionic conductivity and unsatisfactory electrochemical performance for LIBs. Herein, a novel asymmetric porous composite separator composed of a relatively dense nanocellulose (CNC) layer and a porous poly(m-phenylene isophthalamide) (PMIA) supporting layer has been fabricated by using a water-induced phase conversion process.

View Article and Find Full Text PDF

In vertebrates, the basic respiratory rhythm is modified by both sensory feedback and input from higher centers to produce a broad range of breathing patterns. In carp (Cyprinus carpio L.), breathing is often episodic while in trout (Onchorhynchus mykiss) it is continuous and rhythmic except when water is hyperoxic.

View Article and Find Full Text PDF

The development of multifunctional nanoplatforms capable of drug delivery and real-time cellular imaging remains a key challenge in cancer theranostics. Herein, we report the development of a casein-protected maleic acid-derived nitrogen-doped carbon dot-based luminescent nanoplatform (MNCD@Cas NPs) for efficient delivery of the anticancer drug doxorubicin hydrochloride (DOX) to triple-negative breast cancer cells. Synthesized via a facile two-step method, the MNCD@Cas NPs exhibit bright blue fluorescence (λ = 390 nm), high water dispersibility, excellent colloidal stability, and substantial DOX loading capacity (∼84%) driven by electrostatic interactions.

View Article and Find Full Text PDF

Inhibition mechanisms of xanthan gum on high-dose gallic acid-induced functional deterioration of myofibrillar protein: Focusing on gelling and emulsification behaviors.

Carbohydr Polym

November 2025

Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; Key Laboratory of Low Carbon Cold Chain for Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin 300134, China. Electronic address: wzj

For purpose of overcoming the negative impact of high-dose phenols on meat quality, xanthan gum (XG), a natural anionic polysaccharide, was employed to prevent the undesirable interaction between myofibrillar protein (MP) and gallic acid (GA, 150 μmol/g) and ameliorate the gel and emulsification characteristics of MP. XG dose-dependently alleviated the structural damage of MP caused by GA and reduced protein aggregation, manifested as the decrease in surface hydrophobicity, turbidity and aggregate size (p < 0.05) and increase in α-helix content and intrinsic fluorescence.

View Article and Find Full Text PDF