Publications by authors named "Adam B Roddy"

Throughout leaf development, cell expansion is dynamic and driven by the balance between local cell wall mechanical properties and the intracellular turgor pressure that overcomes the stiffness of the cell wall leading to plastic deformation. The epidermal pavement cells in most leaves begin development as small, polygonally shaped cells, but in mature leaves epidermal pavement cells are often shaped as highly lobed puzzle pieces. However, the developmental and biomechanical trajectories between these two end points have not before been fully characterized.

View Article and Find Full Text PDF

The leaf economics spectrum (LES) characterizes a tradeoff between building a leaf for durability versus for energy capture and gas exchange, with allocation to leaf dry mass per projected surface area (LMA) being a key trait underlying this tradeoff. However, regardless of the biomass supporting the leaf, high rates of gas exchange are typically accomplished by small, densely packed stomata on the leaf surface, which is enabled by smaller genome sizes. Here, we investigate how variation in genome size-cell size allometry interacts with variation in biomass allocation (i.

View Article and Find Full Text PDF

Climate change-driven drought events are becoming unescapable in an increasing number of areas worldwide. Understanding how plants are able to adapt to these changing environmental conditions is a non-trivial challenge. Physiologically, improving a plant's intrinsic water use efficiency (WUEi ) will be essential for plant survival in dry conditions.

View Article and Find Full Text PDF

As the site of almost all terrestrial carbon fixation, the mesophyll tissue is critical to leaf function. However, mesophyll tissue is not restricted only to leaves but also occurs in the laminar, heterotrophic organs of the floral perianth, providing a powerful test of how metabolic differences are linked to differences in tissue structure. Here, we compared mesophyll tissues of leaves and flower perianths of six species using high-resolution X-ray computed microtomography (microCT) imaging.

View Article and Find Full Text PDF

Stomatal anatomy and behaviour are key to managing gas exchange fluxes, which require coordination with the plant vascular system to adequately supply leaves with water. Stomatal response times and regulation of water loss are generally understudied in ferns, especially across habits (i.e.

View Article and Find Full Text PDF

Drought-induced xylem embolism is a primary cause of plant mortality. Although c. 70% of cycads are threatened by extinction and extant cycads diversified during a period of increasing aridification, the vulnerability of cycads to embolism spread has been overlooked.

View Article and Find Full Text PDF

A central assumption in plant ecophysiology is that carbon is the primary currency for plant fitness. To this end, plants are thought to maximize carbon gain and any deviations from maximum carbon gain are ascribed to resource limitations (e.g.

View Article and Find Full Text PDF

Flowers are critical for successful reproduction and have been a major axis of diversification among angiosperms. As the frequency and severity of droughts are increasing globally, maintaining water balance of flowers is crucial for food security and other ecosystem services that rely on flowering. Yet remarkably little is known about the hydraulic strategies of flowers.

View Article and Find Full Text PDF

Interconduit pit membranes, which are permeable regions in the primary cell wall that connect to adjacent conduits, play a crucial role in water relations and the movement of nutrients between xylem conduits. However, how pit membrane characteristics might influence water-carbon coupling remains poorly investigated in cycads. We examined pit characteristics, the anatomical and photosynthetic traits of 13 cycads from a common garden, to determine if pit traits and their coordination are related to water relations and carbon economy.

View Article and Find Full Text PDF

Background And Aims: While genome size limits the minimum sizes and maximum numbers of cells that can be packed into a given leaf volume, mature cell sizes can be substantially larger than their meristematic precursors and vary in response to abiotic conditions. Mangroves are iconic examples of how abiotic conditions can influence the evolution of plant phenotypes.

Methods: Here, we examined the coordination between genome size, leaf cell sizes, cell packing densities and leaf size in 13 mangrove species across four sites in China.

View Article and Find Full Text PDF

The spongy mesophyll is a complex, porous tissue found in plant leaves that enables carbon capture and provides mechanical stability. Unlike many other biological tissues, which remain confluent throughout development, the spongy mesophyll must develop from an initially confluent tissue into a tortuous network of cells with a large proportion of intercellular airspace. How the airspace in the spongy mesophyll develops while the tissue remains mechanically stable is unknown.

View Article and Find Full Text PDF

As educators, we should not assume that students are progressing toward intended STEM careers simply because they have persisted and received a STEM degree. In addition to learning biology content and scientific skills, students need guidance in making optimal career choices. In this study, we present seven career development modules designed specifically to motivate students to consider their successes as scientists and to consider applying their biological knowledge and scientific skills to a range of biology careers.

View Article and Find Full Text PDF

Mangroves are frequently inundated with saline water and have evolved different anatomical and physiological mechanisms to filter and, in some species, excrete excess salt from the water they take up. Because salts impose osmotic stress, interspecific differences in salt tolerance and salt management strategy may influence physiological responses to drought throughout the entire plant hydraulic pathway, from roots to leaves. Here, we characterized embolism vulnerability simultaneously in leaves, stems, and roots of seedlings of two mangrove species (Avicennia marina and Bruguiera gymnorrhiza) along with turgor-loss points in roots and leaves and xylem anatomical traits.

View Article and Find Full Text PDF

Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors.

View Article and Find Full Text PDF
Article Synopsis
  • Many plant leaves have palisade and spongy mesophyll layers, with palisade being orderly packed and spongy often viewed as disorganized.
  • Researchers used advanced imaging and analysis to study the spongy mesophyll in 40 plant species, revealing two main structural types: ordered honeycomb-like and less-ordered networks.
  • Variations in structure are linked to factors such as cell size, packing density, and photosynthetic efficiency, suggesting that simple principles may influence mesophyll organization and its relationship to leaf function.
View Article and Find Full Text PDF

Information, energy, and matter are fundamental properties of all levels of biological organization, and life emerges from the continuous flux of matter, energy, and information. This perspective piece defines and explains each of the three pillars of this nexus. We propose that a quantitative characterization of the complex interconversions between matter, energy, and information that comprise this nexus will help us derive biological insights that connect phenomena across different levels of biological organization.

View Article and Find Full Text PDF

Coastal zones, which connect terrestrial and aquatic ecosystems, are among the most resource-rich regions globally and home to nearly 40% of the global human population. Because human land-based activities can alter natural processes in ways that affect adjacent aquatic ecosystems, land-sea interactions are increasingly recognized as critical to coastal conservation planning and governance. However, the complex socioeconomic dynamics inherent in coastal and marine socioecological systems (SESs) have received little consideration.

View Article and Find Full Text PDF

Genome size in cellular organisms varies by six orders of magnitude, yet the cause of this large variation remains unexplained. The influential Drift-Barrier Hypothesis proposes that large genomes tend to evolve in small populations due to inefficient selection. However, to our knowledge no explicit tests of the Drift-Barrier Hypothesis have been reported.

View Article and Find Full Text PDF

Maintaining high rates of photosynthesis in leaves requires efficient movement of CO from the atmosphere to the mesophyll cells inside the leaf where CO is converted into sugar. CO diffusion inside the leaf depends directly on the structure of the mesophyll cells and their surrounding airspace, which have been difficult to characterize because of their inherently three-dimensional organization. Yet faster CO diffusion inside the leaf was probably critical in elevating rates of photosynthesis that occurred among angiosperm lineages.

View Article and Find Full Text PDF

There are multiple hypotheses for the spectacular plant diversity found in deserts. We explore how different factors, including the roles of ecological opportunity and selection, promote diversification and disparification in Encelia, a lineage of woody plants in the deserts of the Americas. Using a nearly complete species-level phylogeny based on double-digest restriction-aided sequencing along with a broad set of phenotypic traits, we estimate divergence times and diversification rates, identify instances of hybridization, quantify trait disparity and assess phenotypic divergence across environmental gradients.

View Article and Find Full Text PDF

Natural selection is an important driver of genetic and phenotypic differentiation between species. For species in which potential gene flow is high but realized gene flow is low, adaptation via natural selection may be a particularly important force maintaining species. For a recent radiation of New World desert shrubs (: Asteraceae), we use fine-scale geographic sampling and population genomics to determine patterns of gene flow across two hybrid zones formed between two independent pairs of species with parapatric distributions.

View Article and Find Full Text PDF

Premise: The young seedling life stage is critical for reforestation after disturbance and for species migration under climate change, yet little is known regarding their basic hydraulic function or vulnerability to drought. Here, we sought to characterize responses to desiccation including hydraulic vulnerability, xylem anatomical traits, and impacts on other stem tissues that contribute to hydraulic functioning.

Methods: Larix occidentalis, Pseudotsuga menziesii, and Pinus ponderosa (all ≤6 weeks old) were imaged using x-ray computed microtomography during desiccation to assess seedling biomechanical responses with concurrently measured hydraulic conductivity (k ) and water potential (Ψ) to assess vulnerability to xylem embolism formation and other tissue damage.

View Article and Find Full Text PDF

Understanding how floral traits affect reproduction is key for understanding genetic diversity, speciation, and trait evolution in the face of global changes and pollinator decline. However, there has not yet been a unified framework to characterize the major trade-offs and axes of floral trait variation. Here, we propose the development of a floral economics spectrum (FES) that incorporates the multiple pathways by which floral traits can be shaped by multiple agents of selection acting on multiple flower functions.

View Article and Find Full Text PDF