Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The leaf economics spectrum (LES) characterizes a tradeoff between building a leaf for durability versus for energy capture and gas exchange, with allocation to leaf dry mass per projected surface area (LMA) being a key trait underlying this tradeoff. However, regardless of the biomass supporting the leaf, high rates of gas exchange are typically accomplished by small, densely packed stomata on the leaf surface, which is enabled by smaller genome sizes. Here, we investigate how variation in genome size-cell size allometry interacts with variation in biomass allocation (i.e. LMA) to influence the maximum surface conductance to CO and the rate of resource turnover as measured by leaf water residence time. We sampled both evergreen and deciduous Rhododendron (Ericaceae) taxa from wild populations and botanical gardens, including naturally occurring putative hybrids and artificially generated hybrids. We measured genome size, anatomical traits related to cell sizes, and morphological traits related to water content and dry mass allocation. Consistent with the LES, higher LMA was associated with slower water residence times, and LMA was strongly associated with leaf thickness. Although anatomical and morphological traits varied orthogonally to each other, cell size had a pervasive impact on leaf functional anatomy: for a given leaf thickness, reducing cell size elevated the leaf surface conductance and shortened the mean water residence time. These analyses clarify how anatomical traits related to genome size-cell size allometry can influence leaf function independently of morphological traits related to leaf longevity and durability.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ppl.70054DOI Listing

Publication Analysis

Top Keywords

cell size
12
leaf
12
water residence
12
morphological traits
12
size pervasive
8
rhododendron ericaceae
8
gas exchange
8
dry mass
8
leaf surface
8
genome size-cell
8

Similar Publications

This study reported a modified hydrothermal solvent method for preparing lignin microspheres (LNSs) with controllable size and morphology by precisely regulating the reaction temperature (160-220 °C). Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) were employed to evaluate the structure, morphological, and dimensional attributes of lignin microspheres, and the synthesis mechanism was discussed. The antibacterial efficacy of the hydrothermally treated lignin microspheres (HTLNSs) was evaluated through phosphate-buffered saline (PBS) culture assays, as well as by assessing nucleic acid and protein leakage, and their inhibitory effect on cell membrane permeability.

View Article and Find Full Text PDF

LDH-chitosan bionanocomposites for oncologic applications: A refreshing perspective on the mutual influence through intermolecular forces toward controlled morphology and dispersion.

Int J Biol Macromol

September 2025

Nanotechnology Laboratory, TRANSCEND Research Center, Regional Institute of Oncology, 2-4 General Henri Mathias Berthelot Street, 700483, Iași, Romania; Faculty of Chemistry, Al. I. Cuza University, 11- Carol I Bvd., 700506, Iasi, Romania. Electronic address:

This contribution discusses the design of bionanocomposites based on chitosan and MgAl layered double hydroxides (LDH) for cancer therapy. Compared to other studies, our approach was to pre-adsorb the metal chloride precursors of LDH on chitosan while the solution of metal precursors with and without H provided the acidic environment for polymer dissolution. The structure, morphology and chemical composition of the bionanocomposites were characterized by XRD, FTIR, TG, etc.

View Article and Find Full Text PDF

Effects of dermal-fibroblast-derived ECM and dextran sulfate supplementation on osteoblast differentiation - results of a preliminary in vitro study.

Injury

August 2025

Department of Trauma Surgery, University and University Hospital of Zurich, Raemistr. 100, 8091 Zurich, Switzerland; Center for Preclinical Development, University and University Hospital of Zurich, Raemistr. 100, 8091 Zurich, Switzerland. Electronic address:

Background: Critical size bone defects represent a clinical challenge, associated with considerable morbidity, and frequently trigger the requirement of secondary procedure. To fill osseous gaps, multiple steps are required, such as proliferation and differentiation on the cellular level and the building of extracellular matrix. In addition, the osteogenic potential of cell-derived extracellular matrices (CD-ECM) is known to enhance bone healing.

View Article and Find Full Text PDF

RNA polymerase II (RNAPII) is regulated by sequence-specific transcription factors (TFs) and the pre-initiation complex (PIC): TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH, and Mediator. TFs, Mediator, and RNAPII contain intrinsically disordered regions (IDRs) and form phase-separated condensates, but how IDRs control RNAPII function remains poorly understood. Using purified PIC factors, we developed a real-time in vitro fluorescence transcription (RIFT) assay for second-by-second visualization of transcription at hundreds of promoters simultaneously.

View Article and Find Full Text PDF

The timely release of chemical messengers is a crucial step in cell-to-cell communication. Does this release occur as a passive diffusion from the donor membrane or it is actively regulated? A series of studies indicated that chemical messengers' secretion is "sub-quantal". This mode of secretion demands a strongly regulated release mechanism and calls for a thorough characterization of the release sites.

View Article and Find Full Text PDF