Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Covalent Organic Frameworks (COFs) exhibit a range of exceptional attributes, including notable porosity, outstanding stability, and a precisely tuned π-conjugated network, rendering them highly promising candidates for fluorescence sensors applications. In this study, the synthesis of two emissive hydrazone-linked COFs designed for hydrazine detection is presented. The partially conjugated structure of the hydrazone linkage effectively weakens the fluorescence quenching processes induced by aggregation. Additionally, the incorporation of flexible structural components further reduces conjugation, thereby enhancing luminescent efficiency. Remarkably, these COFs possess a significant abundance of heteroatoms, enabling distinctive interactions with hydrazine molecules, which in turn results in exceptional selectivity and sensitivity for hydrazine detection. The detection limit of these COFs reaches the nanomolar range, surpassing all previously reported COFs, thereby underscoring their superior performance in chemical sensing applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/marc.202400711DOI Listing

Publication Analysis

Top Keywords

hydrazine detection
12
emissive hydrazone-linked
8
covalent organic
8
organic frameworks
8
cofs
5
hydrazone-linked covalent
4
frameworks highly
4
highly sensitive
4
sensitive selective
4
selective sensor
4

Similar Publications

Background: Daminozide is a commonly utilized plant growth regulator. Both daminozide and its hydrolysis product, 1,1-dimethyl hydrazine ((CH)NNH), exhibit carcinogenic and teratogenic toxicity. Accurate detection of daminozide in food is of great significance to human health.

View Article and Find Full Text PDF

Ru/RuOx/CNTs heterostructured materials are synthesized using an in situ method. The Ru─RuOx heterostructure facilitates active hydrogen dissociation, leading to excellent catalytic performance in nitrate reduction, with ammonia as the primary product at low overpotentials. The process achieves Faradaic efficiencies of ammonia exceeding 90% and a production rate of 1.

View Article and Find Full Text PDF

Crystal arrangements with versatile architectures can be developed by varying functionalization in structurally similar building components and exploring the significance of such networking, which remains a key focus of interest in the functional world of applied inorganic chemistry. In this context, we have introduced a series of novel coordination polymers (CPs), ({[Cd(L1)(SeCN)]·0.5CHCl.

View Article and Find Full Text PDF

With the increasing emphasis on environmental safety, food inspection, and plant physiological functions, the development of high-performance fluorescent probes capable of highly sensitive, specific, rapid, and visual detection of target analytes has become a focal point in current research. Hemicyanine groups are widely utilized in the design of organic small-molecule fluorophores due to their low cost, structural stability, and ease of chemical modification. Through simple structural adjustments, the photoluminescent properties of hemicyanine-based fluorophores can be significantly enhanced, enabling strong signal output and maintaining stable fluorescence intensity across various solvents and pH conditions-features that make them particularly suitable for complex biological and chemical environments.

View Article and Find Full Text PDF

Monitoring the hydrazine (NH) level is essential for environmental and health safety, while traditional detection methods face challenges including low sensitivity, complex sample handling, and sophisticated operation. In this study, a novel fluorescent probe, ZNP, was designed and synthesized for tracking hydrazine in soils and river water. It was used for in situ monitoring of hydrazine generation in living cells.

View Article and Find Full Text PDF