Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: This study aimed to implement and evaluate a Deep Convolutional Neural Network for classifying myofibroblastic lesions into benign and malignant categories based on patch-based images.

Methods: A Residual Neural Network (ResNet50) model, pre-trained with weights from ImageNet, was fine-tuned to classify a cohort of 20 patients (11 benign and 9 malignant cases). Following annotation of tumor regions, the whole-slide images (WSIs) were fragmented into smaller patches (224 × 224 pixels). These patches were non-randomly divided into training (308,843 patches), validation (43,268 patches), and test (42,061 patches) subsets, maintaining a 78:11:11 ratio. The CNN training was caried out for 75 epochs utilizing a batch size of 4, the Adam optimizer, and a learning rate of 0.00001.

Results: ResNet50 achieved an accuracy of 98.97%, precision of 99.91%, sensitivity of 97.98%, specificity of 99.91%, F1 score of 98.94%, and AUC of 0.99.

Conclusions: The ResNet50 model developed exhibited high accuracy during training and robust generalization capabilities in unseen data, indicating nearly flawless performance in distinguishing between benign and malignant myofibroblastic tumors, despite the small sample size. The excellent performance of the AI model in separating such histologically similar classes could be attributed to its ability to identify hidden discriminative features, as well as to use a wide range of features and benefit from proper data preprocessing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11519240PMC
http://dx.doi.org/10.1007/s12105-024-01723-5DOI Listing

Publication Analysis

Top Keywords

neural network
12
benign malignant
12
deep convolutional
8
convolutional neural
8
myofibroblastic lesions
8
resnet50 model
8
patches
5
network accurate
4
accurate classification
4
classification myofibroblastic
4

Similar Publications

Purpose: The present study aimed to develop a noninvasive predictive framework that integrates clinical data, conventional radiomics, habitat imaging, and deep learning for the preoperative stratification of MGMT gene promoter methylation in glioma.

Materials And Methods: This retrospective study included 410 patients from the University of California, San Francisco, USA, and 102 patients from our hospital. Seven models were constructed using preoperative contrast-enhanced T1-weighted MRI with gadobenate dimeglumine as the contrast agent.

View Article and Find Full Text PDF

Designing Buchwald-Hartwig Reaction Graph for Yield Prediction.

J Org Chem

September 2025

State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, P. R. China.

The Buchwald-Hartwig (B-H) reaction graph, a novel graph for deep learning models, is designed to simulate the interactions among multiple chemical components in the B-H reaction by representing each reactant as an individual node within a custom-designed reaction graph, thereby capturing both single-molecule and intermolecular relationship features. Trained on a high-throughput B-H reaction data set, B-H Reaction Graph Neural Network (BH-RGNN) achieves near-state-of-the-art performance with an score of 0.971 while maintaining low computational costs.

View Article and Find Full Text PDF

Background: Circumcision is a widely practiced procedure with cultural and medical significance. However, certain penile abnormalities-such as hypospadias or webbed penis-may contraindicate the procedure and require specialized care. In low-resource settings, limited access to pediatric urologists often leads to missed or delayed diagnoses.

View Article and Find Full Text PDF

This study aimed to develop a deep-learning model for the automatic classification of mandibular fractures using panoramic radiographs. A pretrained convolutional neural network (CNN) was used to classify fractures based on a novel, clinically relevant classification system. The dataset comprised 800 panoramic radiographs obtained from patients with facial trauma.

View Article and Find Full Text PDF

Purpose: To develop and validate a multimodal deep-learning model for predicting postoperative vault height and selecting implantable collamer lens (ICL) sizes using Anterior Segment Optical Coherence Tomography (AS-OCT) and Ultrasound Biomicroscope (UBM) images combined with clinical features.

Setting: West China Hospital of Sichuan University, China.

Design: Deep-learning study.

View Article and Find Full Text PDF