Catalytic function of the laccase enzyme in response to chlorpyrifos and 2,4-dichlorophenoxyacetic acid: behavior in controlled and simulated environments.

Environ Sci Pollut Res Int

Laboratorio de Biotecnología Molecular, Instituto de Biotecnología de Misiones "Dra. Maria Ebe Reca" (InBioMis), Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Campus Universitario UNaM. Ruta Nacional N° 12 Km 7,5, Posadas, Misiones, Argentina.

Published: November 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Enzymes secreted by white-rot fungi, such as laccase, offer a promising solution for treating xenobiotic compounds dangerous to the environment and human health. This study aimed to perform a comprehensive analysis of the tolerance of Pleurotus pulmonarius LBM 105 and its laccase activity toward the pesticides 2,4-D and chlorpyrifos both in vitro and in silico. The fungal strain was able to grow in different concentrations of the pesticides, showing evident morphological alterations. Laccase activity and a 53 kDa electromorph were present in all treatments, showing significant stability with peak activity achieved at a pH of 5.6 and within a temperature range of 50-60 °C. Three laccase genes were mapped, annotated, and characterized from the genome. PplacI obtained better structural validation and affinity energy of - 5.05 and - 7.65 kcal mol with 2,4-D and chlorpyrifos, respectively. The Molecular Mechanics/Poisson-Boltzmann Surface Area analysis at 250 ns confirmed the docking results, revealing the existence of stronger hydrophobic interactions between laccase and chlorpyrifos and highlighting the importance of the Phe341 residue in stabilizing both complexes. Understanding the impact of pesticides on laccase's catalytic function is key to formulating and applying future biotechnological strategies with this enzyme.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-024-35260-zDOI Listing

Publication Analysis

Top Keywords

catalytic function
8
laccase activity
8
24-d chlorpyrifos
8
laccase
6
function laccase
4
laccase enzyme
4
enzyme response
4
chlorpyrifos
4
response chlorpyrifos
4
chlorpyrifos 24-dichlorophenoxyacetic
4

Similar Publications

African swine fever virus (ASFV) is a large DNA virus that causes a highly lethal disease in pigs and currently has no effective vaccines or antiviral treatments available. We designed a protein switch that combines the DNase domain of colicin E9 (DNase E9) and its inhibitor Im9 with the viral protease cleavage site. The complex is only destroyed in the presence of an ASFV pS273R protease, which releases DNase activity.

View Article and Find Full Text PDF

Background-Free Rolling Circle Amplification for SERS Bioassay Using a Chimeric Hairpin-Integrated CRISPR/Cas12a System.

Anal Chem

September 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Energy, Discipline of Intelligent Instrument and Equipment, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen 361

Rolling circle amplification (RCA) has revolutionized nucleic acid detection owing to its isothermal simplicity. However, over two decades of clinical application have been hampered by off-target amplification and incompatibility with double-stranded DNA (dsDNA). Herein, a strategy, specifically cleavage of rationally designed DNA/RNA chimeric hairpin preprimer by dsDNA-targeted CRISPR/Cas12a to rlease ssRNA for initiating RCA (SCOPE-RCA), is proposed for nucleic acid identification of African swine fever virus (ASFV).

View Article and Find Full Text PDF

Developing low-temperature gas sensors for parts per billion-level acetone detection in breath analysis remains challenging for non-invasive diabetes monitoring. We implement dual-defect engineering via one-pot synthesis of Al-doped WO nanorod arrays, establishing a W-O-Al catalytic mechanism. Al doping induces lattice strain to boost oxygen vacancy density by 31.

View Article and Find Full Text PDF

Genetic code expansion (GCE) technology has primarily been devoted to the introduction of noncanonical amino acids (ncAAs) into ribosomally synthesized proteins or peptides. Its potential for modifying nonribosomal natural products remains unexplored. In this study, we introduce a novel strategy that integrates GCE with the directed evolution of cyclodipeptide synthase (CDPS) to engineer a new class of CDPSs capable of biosynthesizing cyclodipeptides containing ncAAs.

View Article and Find Full Text PDF

Quinoline as a Photochemical Toolbox: From Substrate to Catalyst and Beyond.

Acc Chem Res

September 2025

Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montréal, Québec H3A 0B8, Canada.

ConspectusMolecular photochemistry, by harnessing the excited states of organic molecules, provides a platform fundamentally distinct from thermochemistry for generating reactive open-shell or spin-active species under mild conditions. Among its diverse applications, the resurgence of the Minisci-type reaction, a transformation historically reliant on thermally initiated radical conditions, has been fueled by modern photochemical strategies with improved efficiency and selectivity. Consequently, the photochemical Minisci-type reaction ranks among the most enabling methods for C()-H functionalizations of heteroarenes, which are of particular significance in medicinal chemistry for the rapid diversification of bioactive scaffolds.

View Article and Find Full Text PDF