98%
921
2 minutes
20
Mercury, particularly in its methylated form, poses a significant environmental and health risk in aquatic ecosystems. While the toxicity and bioaccumulation of mercury are well documented, there remains a critical gap in our understanding of the mechanisms governing mercury methylation and demethylation in aquatic environments. This review systematically examines the complex interplay of chemical, biological, and physical factors that influence mercury speciation and transformation in natural water systems. We provide a comprehensive analysis of methylation and demethylation processes, specifically focusing on the dominant role of methanogenic bacteria. Our study highlights the crucial function of hgcAB genes in facilitating mercury methylation by anaerobic microorganisms, an area that represents a frontier in current research. By synthesizing the existing knowledge and identifying key research priorities, this review offers novel insights into the intricate dynamics of mercury cycling in aquatic ecosystems. Our findings provide a theoretical framework to inform future studies and guide pollution management strategies for mercury and its compounds in aquatic environments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511217 | PMC |
http://dx.doi.org/10.3390/toxics12100715 | DOI Listing |
Front Immunol
September 2025
Department of Rheumatology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China.
Purpose: This study aimed to investigate whether Jianpi-Zishen Formula (JPZS) modulates the Treg/Th17 balance in MRL/lpr mice through regulation of DNA methyltransferase 1 (DNMT1)-mediated forkhead box P3 (Foxp3) methylation, and to elucidate its potential mechanism for improving immune homeostasis in systemic lupus erythematosus (SLE).
Methods: Forty-eight female MRL/lpr mice were randomized into six groups (n=8/group): JPZS (low/medium/high doses), 5-aza-CdR (DNMT inhibitor), DC_517 (DNMT1 inhibitor), and model control. Eight C57BL/6 mice served as healthy controls.
Front Cell Dev Biol
August 2025
Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.
Background: Lactate has been shown to play an important immunosuppressive role in the tumor microenvironment (TME) and promote tumor progression through a variety of different mechanisms of action. Myeloid-derived suppressor cells (MDSCs) are important cells that play an immunosuppressive role in the TME. However, the underlying mechanism by which lactate regulates MDSCs remains unclear.
View Article and Find Full Text PDFFront Cell Dev Biol
August 2025
Laboratory of Rheumatology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
Introduction: Nephropathic cystinosis is a rare genetic disorder characterized by cystine accumulation in lysosomes that causes early renal dysfunction and progressive chronic kidney disease. Although several metabolic pathways, including oxidative stress and inflammation, have been implicated in the progression of renal parenchyma damage, the precise mechanisms driving its progression are not fully understood. Recent studies suggest that epigenetic modifications, particularly DNA methylation (DNAm), play a critical role in the development of chronic kidney disease.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Faculty of Applied Sciences, Macao Polytechnic University, Macao. Electronic address:
Osteosarcoma (OS), the most prevalent primary bone malignancy in adolescents, is characterized by aggressive progression and early metastasis. However, the epigenetic drivers of its metastatic heterogeneity remain poorly understood. Herein, we integrated bulk DNA methylation profiling and single-cell RNA sequencing (scRNA-seq) to elucidate the epigenetic mechanisms driving OS metastatic heterogeneity.
View Article and Find Full Text PDFPlant Physiol
September 2025
National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China.
Lemon (Citrus limon L.), an economically important Citrus species, produces high levels of citric acid. However, the regulatory mechanisms underlying citric acid accumulation in lemon fruit are poorly understood.
View Article and Find Full Text PDF