Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Deficits in cognitive control are implicated in numerous neuropsychiatric disorders. However, relevant pharmacological treatments are limited, likely due to weak translational validity of applicable preclinical models used. Neural indices derived from electroencephalography may prove useful in comparing and translating the effects of cognition-enhancing drugs between species. In the current study, we aimed to extend our previous cross-species results by examining if methylphenidate (MPH) modulates behavioral and neural indices of cognitive control in independent cohorts of humans and rats.

Methods: We measured continuous electroencephalography data from healthy adults (n = 25; 14 female) and Long Evans rats (n = 22; 8 female) and compared both stimulus- and response-locked event-related potentials and spectral power measures across species, and their MPH-related moderation following treatment with vehicle (placebo) or 1 of 2 doses of MPH.

Results: Across both species, linear mixed effects modeling confirmed the expected Flanker interference effect on behavior (eg, accuracy) and response-related event-related potentials. Unexpectedly, in contrast to past work, we did not observe any task-related effects on the spectral power of rodents. Moreover, MPH generally did not modulate cognitive control of either species, although some species-specific patterns offer insight for future research.

Conclusions: Collectively, these findings in independent human and rodent subjects replicate some of our previously reported behavioral and neurophysiological patterns partly consistent with the notion that similar neural mechanisms may regulate cognitive control in both species. Nonetheless, these results showcase an approach to accelerate translation using a coordinated between-species platform to evaluate pro-cognitive treatments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11549206PMC
http://dx.doi.org/10.1093/ijnp/pyae050DOI Listing

Publication Analysis

Top Keywords

cognitive control
20
behavioral neurophysiological
8
neural indices
8
event-related potentials
8
spectral power
8
control species
8
cognitive
5
control
5
species
5
neurophysiological signatures
4

Similar Publications

Background: Poststroke cognitive impairment (PSCI) affects 30% to 50% of stroke survivors, severely impacting functional outcomes and quality of life. This study uses functional near-infrared spectroscopy (fNIRS) to assess task-evoked brain activation and its potential for stratifying the severity in patients with PSCI.

Method: A cross-sectional study was conducted at Nanchong Central Hospital between June 2023 and April 2024.

View Article and Find Full Text PDF

Parasagittal dural space and arachnoid granulations morphology in pre-clinical and early clinical multiple sclerosis.

Mult Scler

September 2025

Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, VA Medical Center, TN Valley Healthcare System, Nashville, TN, USA.

Background: There is limited knowledge on the post-glymphatic structures such as the parasagittal dural (PSD) space and the arachnoid granulations (AGs) in multiple sclerosis (MS).

Objectives: To evaluate differences in volume and macromolecular content of PSD and AG between people with newly diagnosed MS (pwMS), clinically isolated syndrome (pwCIS), or radiologically isolated syndrome (pwRIS) and healthy controls (HCs) and their associations with clinical and radiological disease measures.

Methods: A total of 69 pwMS, pwCIS, pwRIS, and HCs underwent a 3.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) impairs attention and executive function, often through disrupted coordination between cognitive and autonomic systems. While electroencephalography (EEG) and pupillometry are widely used to assess neural and autonomic responses independently, little is known about how these systems interact in TBI. Understanding their coordination is essential to identify compensatory mechanisms that may support attention under conditions of neural inefficiency.

View Article and Find Full Text PDF

Goal-directed behavior requires adjusting cognitive control, both in preparation for and in reaction to conflict. Theta oscillations and population activity in dorsomedial prefrontal cortex (dmPFC) and dorsolateral PFC (dlPFC) are known to support reactive control. Here, we investigated their role in proactive control using human intracranial electroencephalogram (EEG) recordings during a Stroop task that manipulated conflict expectations.

View Article and Find Full Text PDF

Background: Increasing evidence suggests a potential role of the gut microbiota in Parkinson's disease (PD). However, the relationship between the gut microbiome (GM) and PD dementia (PDD) remains debated, with their causal effects and underlying mechanisms not yet fully understood.

Methods: Utilizing data from large-scale genome-wide association studies (GWASs), this study applied bidirectional and mediating Mendelian randomization (MR) to investigate the causal relationship and underlying mechanisms between the GM and PDD.

View Article and Find Full Text PDF