Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Specific combinations of LFY and WAPO1 natural alleles maximize spikelet number per spike in wheat. Spikelet number per spike (SNS) is an important yield component in wheat that determines the maximum number of grains that can be formed in a wheat spike. In wheat, loss-of-function mutations in LEAFY (LFY) or its interacting protein WHEAT ORTHOLOG OF APO1 (WAPO1) significantly reduce SNS by reducing the rate of formation of spikelet meristems. In previous studies, we identified a natural amino acid change in WAPO1 (C47F) that significantly increases SNS in hexaploid wheat. In this study, we searched for natural variants in LFY that were associated with differences in SNS and detected significant effects in the LFY-B region in a nested association mapping population. We generated a large mapping population and confirmed that the LFY-B polymorphism R80S is linked with the differences in SNS, suggesting that LFY-B is the likely causal gene. A haplotype analysis revealed two amino acid changes P34L and R80S, which were both enriched during wheat domestication and breeding suggesting positive selection. We also explored the interactions between the LFY and WAPO1 natural variants for SNS using biparental populations and identified significant interaction, in which the positive effect of the 80S and 34L alleles from LFY-B was only detected in the WAPO-A1 47F background but not in the 47C background. Based on these results, we propose that the allele combination WAPO-A1-47F/LFY-B 34L 80S can be used in wheat breeding programs to maximize SNS and increase grain yield potential in wheat.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11502542PMC
http://dx.doi.org/10.1007/s00122-024-04759-xDOI Listing

Publication Analysis

Top Keywords

spikelet number
12
number spike
12
spike wheat
12
wheat
10
amino acid
8
natural variants
8
differences sns
8
mapping population
8
sns
7
natural
4

Similar Publications

Reshaping epigenomic landscapes facilitated bread wheat speciation.

Plant Physiol

September 2025

Laboratory of Advanced Breeding Technologies, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.

Polyploidization is a driving force of wheat (Triticum aestivum) evolution and speciation, yet its impact on epigenetic regulation and gene expression remains unclear. Here, we constructed a high-resolution epigenetic landscape across leaves, spikes, and roots of hexaploid wheat and its tetraploid and diploid relatives. Inter-species stably expressed genes exhibited conserved amino acid sequences under strong purifying selection, while dynamically expressed genes were linked to species-specific adaptation.

View Article and Find Full Text PDF

Introduction: The autogamous nature of wheat presents a significant challenge for hybrid wheat breeding, which relies on cross-pollination. To facilitate hybrid wheat production, it is essential to modify the floral morphology of wheat to promote outbreeding rather than inbreeding. While some genetic diversity for flower morphology exists within wheat, it is limited compared to the vast and largely untapped genetic variation found in its wild relatives for potentially all agronomically important traits, including flowering characteristics.

View Article and Find Full Text PDF

Loss of function is involved in the unique grain shape of "Tanpo", a Japanese landrace rice.

Breed Sci

April 2025

Department of Plant Production, Faculty of Bioresources, Akita Prefectural University, Kaidoubata-Nishi 241-438, Shimoshinjyo-Nakano, Akita 010-0195, Japan.

"Tanpo", a Japanese rice landrace widely cultivated approximately 120 years ago in Akita Prefecture, exhibits a shorter, wider, thicker, and heavier grain compared to Akitakomachi. Microscopic analysis has revealed that the epidermal cells of Tanpo spikelet hulls are narrower and shorter, with an increased number of cells in the grain width direction, thus resulting in a distinctive grain shape. In a genetic analysis of an F population derived from a cross between Tanpo and Akitakomachi, the Tanpo allele was found to determine the grain shape in a recessive manner.

View Article and Find Full Text PDF

Introduction: Direct-seeded rice is characterized by simplicity, efficiency, and environmental friendliness, with its planting area progressively expanding. However, inappropriate seeding rates can result in issues such as lodging and reduced productive tillers, thereby constraining yield potential. Consequently, this study investigated the response mechanisms of tillering, the heterogeneity between main stems and tillers, and the susceptibility to lodging under varying seeding rates in direct-seeded rice.

View Article and Find Full Text PDF

Background: Spikelet number, a core phenotypic parameter for wheat yield composition, requires precise estimation through accurate spike contour extraction and differentiation between grain surfaces and spikelet surfaces. However, technical challenges persist in precise spike segmentation under complex field backgrounds and morphological differentiation between grain/spikelet surfaces.

Method: Building on two-year multi-angle wheat spike imagery, we propose an enhanced YOLOv9-LDS multi-scale object detection framework.

View Article and Find Full Text PDF