Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objectives: The purpose of this study was to develop and validate a new feature fusion algorithm to improve the classification performance of benign and malignant ground-glass nodules (GGNs) based on deep learning.

Methods: We retrospectively collected 385 cases of GGNs confirmed by surgical pathology from three hospitals. We utilized 239 GGNs from Hospital 1 as the training and internal validation set, and 115 and 31 GGNs from Hospital 2 and Hospital 3, respectively, as external test sets 1 and 2. Among these GGNs, 172 were benign and 203 were malignant. First, we evaluated clinical and morphological features of GGNs at baseline chest CT and simultaneously extracted whole-lung radiomics features. Then, deep convolutional neural networks (CNNs) and backpropagation neural networks (BPNNs) were applied to extract deep features from whole-lung CT images, clinical, morphological features, and whole-lung radiomics features separately. Finally, we integrated these four types of deep features using an attention mechanism. Multiple metrics were employed to evaluate the predictive performance of the model.

Results: The deep learning model integrating clinical, morphological, radiomics and whole lung CT image features with attention mechanism (CMRI-AM) achieved the best performance, with area under the curve (AUC) values of 0.941 (95% CI: 0.898-0.972), 0.861 (95% CI: 0.823-0.882), and 0.906 (95% CI: 0.878-0.932) on the internal validation set, external test set 1, and external test set 2, respectively. The AUC differences between the CMRI-AM model and other feature combination models were statistically significant in all three groups (all p<0.05).

Conclusion: Our experimental results demonstrated that (1) applying attention mechanism to fuse whole-lung CT images, radiomics features, clinical, and morphological features is feasible, (2) clinical, morphological, and radiomics features provide supplementary information for the classification of benign and malignant GGNs based on CT images, and (3) utilizing baseline whole-lung CT features to predict the benign and malignant of GGNs is an effective method. Therefore, optimizing the fusion of baseline whole-lung CT features can effectively improve the classification performance of GGNs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11496306PMC
http://dx.doi.org/10.3389/fonc.2024.1447132DOI Listing

Publication Analysis

Top Keywords

attention mechanism
12
external test
12
clinical morphological
12
benign malignant
8
ggns hospital
8
internal validation
8
validation set
8
morphological features
8
whole-lung radiomics
8
radiomics features
8

Similar Publications

With the persistence of difficult employment, a large number of college students feel anxious and nervous about job hunting. College students with different family economic status have various feelings and performances when faced with employment, possibly due to subjective social class differences. The present study investigated the employment confidence of 611 undergraduates in Chongqing, aimed to ascertain the overall employment confidence of Chinese college students, and tried to analyze how subjective social class works on the employment confidence of college students and its influencing mechanism.

View Article and Find Full Text PDF

Single-cell and spatial transcriptomics identify dihydrolipoic acid succinyltransferase as a promoter of tumor invasion via vascular pathways in cutaneous melanoma.

Int J Biol Macromol

September 2025

School of Life Sciences, Anhui Medical University, Hefei, 230032, China; Translational Research Institute of Henan Provincial People's Hospital, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metaboli

Melanoma is the most aggressive and lethal form of skin cancer, posing significant challenges for prognosis assessment and treatment. Recently, metabolic reprogramming and epigenetic regulation have gained attention for their roles in cancer progression. The role of the key metabolic enzyme dihydrolipoic acid succinyltransferase (DLST) in cancer is currently unclear.

View Article and Find Full Text PDF

With growing public attention to environmental issues and sustainable development, biodegradable bio-based plastics have attracted widespread interest. This study reveals the chemical-physical synergistic regulation mechanism of biodegradable PLA/PBAT blends through the synergistic modification of epoxidized natural rubber (ENR) and epoxy chain extender (ADR). Interfacial interaction analysis shows that PBAT tends to encapsulate ENR to form aggregates.

View Article and Find Full Text PDF

Prior researches on global-local processing have focused on hierarchical objects in the visual modality, while the real-world involves multisensory interactions. The present study investigated whether the simultaneous presentation of auditory stimuli influences the recognition of visually hierarchical objects. We added four types of auditory stimuli to the traditional visual hierarchical letters paradigm:no sound (visual-only), a pure tone, a spoken letter that was congruent with the required response (response-congruent), or a spoken letter that was incongruent with it (response-incongruent).

View Article and Find Full Text PDF

Learning from history for personalized federated learning.

Neural Netw

September 2025

College of Information Science, North China University of Technology, Beijing, China. Electronic address:

Personalized Federated Learning (pFL) has received extensive attentions, due to its ability to effectively process non-IID data distributed among different clients. However, most of the existing pFL methods focus on the collaboration between global and local models to enrich the personalization process, but ignoring a lot of valuable historical information, which represents the unique learning trajectory of each client. In this paper, we propose a pFL method called FedLFH, which introduces a tracking variable that allows each client to preserve historical information to facilitate personalization.

View Article and Find Full Text PDF