Cocrystallization-Induced Red Ultralong Organic Phosphorescence.

Angew Chem Int Ed Engl

Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.

Published: February 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Organic cocrystals formed through multicomponent self-assembly have attracted significant interest owing to their clear structure and tunable optical properties. However, most cocrystal systems suffer from inefficient long-wavelength emission and low phosphorescence efficiency due to strong non-radiative processes governed by the energy gap law. Herein, an efficient long-lived red afterglow is achieved using a pyrene (Py) cocrystal system incorporating a second component (NPYC4) with thermally activated delayed fluorescence (TADF) and ultralong organic phosphorescence (UOP) properties. The cocrystal (NPYC4-Py) not only inherits the excellent luminescence of its monomeric counterparts, but also exhibits unique dual-mode characteristics, including persistent TADF and UOP emission with a high quantum yield of 58 % and a lifetime of 362 ms. The precise cocrystal stacking distinctly reveals that intermolecular interactions lock the cocrystal formation and weaken the intermolecular π-π interactions between NPYC4 and Py, thereby stabilizing the excited triplet excitons. Furthermore, the favorable energy level of NPYC4 acts as a bridge, reducing the energy gap between the S and T states for Py, therefore activating its red phosphorescence from Py. This research provides direct insights into achieving efficient red UOP through co-crystallization.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202417868DOI Listing

Publication Analysis

Top Keywords

ultralong organic
8
organic phosphorescence
8
properties cocrystal
8
energy gap
8
cocrystal
5
cocrystallization-induced red
4
red ultralong
4
phosphorescence
4
phosphorescence organic
4
organic cocrystals
4

Similar Publications

Engineering Covalent and Noncovalent Interface Synergy in MXenes for Ultralong-life and Efficient Energy Storage.

Angew Chem Int Ed Engl

September 2025

Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P.R. China.

MXenes serve as pivotal candidates for pseudocapacitive energy storage owing to sound proton/electron-transport capability and tunable topology. However, the metastable surface terminal properties and the progressive oxidation leads to drastic capacity fading, posing significant challenges for sustainable energy applications. Here, with the aramid nanofiber as the interface mediator, we engineer the thermal reconstruction of MXenes to synergistically introduce interfacial covalent and noncovalent interactions, resulting in a high specific capacitance of 531.

View Article and Find Full Text PDF

BN-fused aromatic compounds have garnered significant attention due to their unique electronic structures and exceptional photophysical properties, positioning them as highly promising candidates for applications in organic optoelectronics. However, the regioselective synthesis of BN isomers remains a formidable challenge, primarily stemming from the difficulty in precisely controlling reaction sites, limiting structural diversity and property tunability. Herein, we propose a regioselective synthetic strategy that employs 2,1-BN-naphthalene derivatives, wherein selective activation of N-H and C-H bonds is achieved in conjunction with -halogenated phenylboronic acids.

View Article and Find Full Text PDF

Ultralong-Lived Excitons in Metallo-Quinoline-Incorporated Covalent Organic Frameworks Promote Photoreductive Cross-Coupling.

Angew Chem Int Ed Engl

September 2025

College of Polymer Science and Engineering, State Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu, 610065, P.R. China.

Designing long-lived excitons in photocatalysts is crucial for efficient charge separation. However, most of the current organic photocatalysts are characterized by a relatively short exciton lifetime within the range of picoseconds due to localized excitons with large binding energies. Herein, we report the design of ultralong-lived excitons with a lifetime exceeding 8000 ps by constructing metallo-quinoline-incorporated covalent organic frameworks (COFs).

View Article and Find Full Text PDF

Poly(benzoxazine)-Based Gel Polymer Electrolytes for Lithium Metal Batteries With Ultralong Lifespans.

Angew Chem Int Ed Engl

August 2025

Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.

Gel polymer electrolyte (GPE) is a desirable candidate for high-safety lithium batteries but is still plagued by the dynamic fluctuations of liquid electrolyte components, which induce localized fluid aggregation or leakage, ultimately leading to performance instability or even degradation. Here, we develop a novel poly(benzoxazine-propylene-oxide)-based GPE, achieving superior electrochemical performance and high safety simultaneously. Through molecular architecture design, the strategic incorporation of long-chain propylene-oxide segments and amide functionalities into the benzoxazine backbone endows the polymer matrix with enhanced lithium-ion transport capability.

View Article and Find Full Text PDF

Ultralong organic afterglow from small molecular host-guest materials: state of the art.

Light Sci Appl

August 2025

Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics & Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China.

Ultralong organic afterglow materials are being actively explored as attractive candidates for a wide range of applications such as data storage, security inks, emergency lighting, etc., due to their unique long-lived excited state properties and inherent advantages of low cost, appreciable functionality and ease of preparation. In the last three years, much effort has been devoted to achieving efficient ultralong afterglow from organic small molecules, which possess controllable intermolecular interactions and defined energy levels, making them a good platform to suppress the non-radiative decays, hence stabilizing the excitons for efficient afterglow emissions at room temperature.

View Article and Find Full Text PDF