98%
921
2 minutes
20
Solving the electronic structure problem is a notorious challenge in quantum chemistry and material science. Variational quantum eigensolver (VQE) is a promising hybrid classical-quantum algorithm for finding the lowest-energy configuration of a molecular system. However, it typically requires many qubits and quantum gates with substantial quantum circuit depth to accurately represent the electronic wave function of complex structures. Here, we propose an alternative approach to solve the electronic structure problem using VQE with a single qudit. Our approach exploits a high-dimensional orbital angular momentum state of a heralded single photon and notably reduces the required quantum resources compared to conventional multi-qubit-based VQE. We experimentally demonstrate that our single-qudit-based VQE can efficiently estimate the ground state energy of hydrogen (H) and lithium hydride (LiH) molecular systems corresponding to two- and four-qubit systems, respectively. We believe that our scheme opens a pathway to perform a large-scale quantum simulation for solving more complex problems in quantum chemistry and material science.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11498208 | PMC |
http://dx.doi.org/10.1126/sciadv.ado3472 | DOI Listing |
J Phys Chem Lett
September 2025
School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K.
The electron-deficient oxidant 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) has recently emerged as a promising visible-light photoredox catalyst. However, its excited-state behavior remains poorly understood. Here, we investigate the ultrafast dynamics of photoexcited DDQ in acetonitrile using transient electronic and infrared absorption spectroscopy, supported by quantum chemical calculations.
View Article and Find Full Text PDFLight Sci Appl
September 2025
State Key Laboratory of Quantum Optics Technologies and Devices, Institute of Opto-Electronics, Shanxi University, 030006, Taiyuan, China.
The dominant technical noise of a free-running laser practically limits bright squeezed light generation, particularly within the MHz band. To overcome this, we develop a comprehensive theoretical model for nonclassical power stabilization, and propose a novel bright squeezed light generation scheme incorporating hybrid power noise suppression. Our approach integrates broadband passive power stabilization with nonclassical active stabilization, extending the feedback bandwidth to MHz frequencies.
View Article and Find Full Text PDFLight Sci Appl
September 2025
Laboratory of Quantum Information, University of Science and Technology of China, 230026, Hefei, China.
Quantum imaging with spatially entangled photons offers advantages such as enhanced spatial resolution, robustness against noise, and counterintuitive phenomena, while a biphoton spatial aberration generally degrades its performance. Biphoton aberration correction has been achieved by using classical beams to detect the aberration source or scanning the correction phase on biphotons if the source is unreachable. Here, a new method named position-correlated biphoton Shack-Hartmann wavefront sensing is introduced, where the phase pattern added on photon pairs with a strong position correlation is reconstructed from their position centroid distribution at the back focal plane of a microlens array.
View Article and Find Full Text PDFNano Lett
September 2025
School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China.
High-density mirror twin boundaries (MTBs) embedded in two-dimensional (2D) transition metal dichalcogenides (TMDCs) have emerged as fascinating platforms for exploring charge density wave and Tomonaga-Luttinger liquid-related issues. However, the reversible manipulation of high-density MTBs in 2D TMDCs remains challenging. Herein, we report the first fabrication of high-density MTB loops in ultrathin 1T-NiTe on the SrTiO(001) substrate, by postannealing as-grown 1T-NiTe under Te-deficient conditions.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Department of Nanoscience and Nanoengineering, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey; Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey. Electronic address:
This study presents the development of multifunctional starch-based biopolymer films reinforced with nitrogen-doped carbon quantum dots (N-CQDs), synthesized via a hydrothermal method, and exhibiting a high quantum yield (~70 %). N-CQDs were incorporated into the starch matrix at varying concentrations (0.1-1.
View Article and Find Full Text PDF