Delocalization State-Stabilized Zn Active Sites for Highly Selective and Durable CO Electroreduction.

Small

Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.

Published: December 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Zinc (Zn)-based materials are cost-effective and promising single-metal catalysts for CO electroreduction to CO but is still challenged by low selectivity and long-term stability. Undercoordinated Zn (Zn) sites have been demonstrated to be powerful active centers with appropriate COOH affinity for efficient CO production However, electrochemical reduction conditions generally cause the inevitable reduction of Zn, resulting in the decline of CO efficiency over prolonged operation. Herein, a Zn cyanamide (ZnNCN) catalyst is constructed for highly selective and durable CO electroreduction, wherein the delocalized Zn d-electrons and resonant structure of cyanamide ligand prevent the self-reduction of ZnNCN and maintain Zn sites under cathodic conditions. The mechanism studies based on density functional theory and operando spectroscopies indicate that delocalized Zn site can stabilize the key COOH intermediate through hard-soft acid-base theory, therefore thermodynamically promoting CO-to-CO conversion. Consequently, ZnNCN delivers a CO Faradaic efficiency (FE) of up to 93.9% and further exhibits a remarkable stability lifespan of 96 h, representing a significant advancement in developing robust Zn-based electrocatalysts. Beyond expanding the variety of CO reduction catalysts, this work also offers insights into understanding the structure-function sensitivity and controlling dynamic active sites.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202406604DOI Listing

Publication Analysis

Top Keywords

active sites
8
highly selective
8
selective durable
8
durable electroreduction
8
delocalization state-stabilized
4
state-stabilized active
4
sites
4
sites highly
4
electroreduction zinc
4
zinc zn-based
4

Similar Publications

Transcutaneous devices such as dental implants frequently fail due to infections at their interfaces with epithelial tissues. These infections are facilitated by the lack of integration between the devices and the surrounding soft tissues. This study aims to improve epithelial integration through surface modification of a transcutaneous implant material (polyetheretherketone (PEEK)).

View Article and Find Full Text PDF

Ni-Fe (oxy)hydroxides are among the most active oxygen evolution reaction (OER) catalysts in alkaline media. However, achieving precise control over local asymmetric Fe-O-Ni active sites in Ni-Fe oxyhydroxides for key oxygenated intermediates' adsorption steric configuration regulation of the OER is still challenging. Herein, we report a two-step dealloying strategy to fabricate asymmetric Fe-O-Ni pair sites in the shell of NiOOH@FeOOH/NiOOH heterostructures from NiFe Prussian blue analogue (PBA) nanocubes, involving anion exchange and structure reconstruction.

View Article and Find Full Text PDF

Developing low-temperature gas sensors for parts per billion-level acetone detection in breath analysis remains challenging for non-invasive diabetes monitoring. We implement dual-defect engineering via one-pot synthesis of Al-doped WO nanorod arrays, establishing a W-O-Al catalytic mechanism. Al doping induces lattice strain to boost oxygen vacancy density by 31.

View Article and Find Full Text PDF

Ultrasmall MoC-MoO Heterojunction Coupled with Nitrogen-Doped Reduced Graphene for Boosting the Deep Oxidative Desulfurization of Fuel Oils.

Langmuir

September 2025

Engineering Technology Research Center of Preparation and Application of Industrial Ceramics of Anhui Province, Engineering Research Center of High-frequency Soft Magnetic Materials and Ceramic Powder Materials of Anhui Province, School of Chemistry and Material Engineering, Chaohu University, Chaoh

In this study, a MoC-MoO@NCrGO-900 composite catalyst comprising two-dimensional nitrogen-doped reduced graphene oxide (NCrGO) and ultrasmall molybdenum carbide-molybdenum dioxide (MoC-MoO) heterojunctions was synthesized. The optimized catalyst exhibited an outstanding oxidative desulfurization (ODS) performance. Specifically, a model oil containing 4000 ppm sulfur was completely desulfurized within 30 min, with a desulfurization efficiency of 98.

View Article and Find Full Text PDF

Constructing Ni(OH) nanosheets on a nickel foam electrode for efficient electrocatalytic ethanol oxidation.

Dalton Trans

September 2025

Sun Yat-Sen University, MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Guangzhou 510275, China.

The main bottleneck faced by traditional hydrogen production technology through water electrolysis lies in the high energy consumption of the anodic oxygen evolution reaction (OER). Combining the thermodynamically favorable ethanol oxidation reaction (EOR) with the hydrogen evolution reaction provides a promising route to reduce the energy consumption of hydrogen production and generate high value-added products. In this study, a facile method was developed for nickel oxyhydroxide (NiOOH) fabrication.

View Article and Find Full Text PDF