Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

MicroRNAs (miRNAs) are closely associated with cancer and have been considered cancer biomarkers. Herein, we propose an electrochemiluminescence (ECL) biosensor for detecting miRNA-21 based on target-induced catalytic hairpin self-assembly (CHA) and CuO-mediated azide-alkyne cycloaddition. Two hairpin DNAs were employed: one was immobilized on magnetic beads (HP2) and another was labeled with CuO (HP1-CuO). HP1 and HP2 formed a duplex through CHA induced by miRNA-21, resulting in the immobilization of CuO on magnetic beads and in the recycling of miRNA-21. After magnetic separation, CuO was treated with hydrochloric acid to release Cu, which concentration is quantitatively proportional to the target concentration. Subsequently, Cu was reduced to Cu, which catalyzed the click reaction between Fc-C CH and SH-DNA-N immobilized on a Au/g-CN modified electrode. Thus, the ECL of Au/g-CN was quenched by Fc, and miRNA-21 was indirectly detected through a change in ECL intensity. Benefiting from the amplification effect of CuO nanoparticle loading, CHA-based target recycling, and the catalytic effect of click reaction, the proposed ECL biosensor showed high sensitivity. Experimental results indicate that the ECL biosensor proposed for detecting miRNA-21 exhibits a wide linear range from 1 fM to 1 nM and a low detection limit of 0.26 fM (3σ/S). Furthermore, the ECL sensor was capable of measuring miRNA-21 in real serum with high selectivity, indicating its notable applicable potential in biomedicine and clinical diagnosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2024.127033DOI Listing

Publication Analysis

Top Keywords

detecting mirna-21
12
click reaction
12
ecl biosensor
12
biosensor detecting
8
mirna-21 based
8
catalytic hairpin
8
hairpin self-assembly
8
magnetic beads
8
mirna-21
7
ecl
6

Similar Publications

Programmable Dual-Phase Electrochemical Biosensor Combines Homogeneous CRISPR/Cas12a Activation with Interfacial Poly-G Signaling for miRNA-21 Detection.

Anal Chem

September 2025

Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological and Chemical Engineering, Jiaxing University, Jiaxing 314001, China.

Despite the promise of electrochemical biosensors in amplified nucleic acid diagnostics, existing high-sensitivity platforms often rely on a multilayer surface assembly and cascade amplification confined to the electrode interface. These stepwise strategies suffer from inefficient enzyme activity, poor mass transport, and inconsistent probe orientation, which compromise the amplification efficiency, reproducibility, and practical applicability. To address these limitations, we report a programmable dual-phase electrochemical biosensing system that decouples amplification from signal transduction.

View Article and Find Full Text PDF

Rational optimization of the pore size and topology of porous nanocarriers is crucial for improving the loading amount of luminophore and enhancing electrochemiluminescence (ECL) performance. In this study, an equimolar linear ligand replacement strategy was employed to synthesize novel mesoporous metal-organic frameworks (MOFs) for encapsulating Ru(bpy) (Ru@Zr MOFs) under room temperature without an acid modulator. Ingenious ligand substitution allows precise control of pore size, enabling encapsulation at the single-molecule level within mesoporous cages.

View Article and Find Full Text PDF

SERS biosensor based on the Cas13a assisted entropy-driven system and lychee-like Fe-TiO with excellent exciton capture and separation.

Anal Chim Acta

October 2025

Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China. Electronic address:

Background: Entropy-Driven Circuits (EDC), distinguished by their spontaneous operation and absence of enzymatic reactions, represent a superior strategy for integration with CRISPR/Cas systems, as they obviate the potential for interference among various enzymes during the process of DNA amplification and CRISPR/Cas system integration. Due to the wide band gap of TiO, its response to visible light is limited, and owing to its high crystallinity and exceptionally stable crystal lattice, the charge transfer (CT) process in TiO is suboptimal.

Results: In this study, lychee-like Fe-TiO was firstly prepared to serve as Raman enhanced substrate, facilitating exciton capture and separation to exhibit an excellent Surface-enhanced Raman spectroscopy (SERS) performance.

View Article and Find Full Text PDF

Integrated electrochemical biosensor featuring nanoforest hierarchical architectures and catalytic hairpin amplification for breast cancer diagnosis.

Talanta

August 2025

Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China. Electronic address:

MicroRNAs (miRNAs) serves as a crucial biomarker for early cancer diagnosis, and dual-target miRNA detection significantly enhances diagnostic accuracy. However, the uncontrollable uniformity of multi-capture probe modifications, limited electrode sites, and high sample consumption restrict the advancement of electrochemical biosensors in clinical diagnostics. In this work, an integrated microdroplet chip electrochemical biosensor has been ingeniously developed, including TiO nanorods modified by Au nanoparticles vertically arranged on the FTO as the working electrode, which exhibits high electron transfer efficiency and abundant anchoring sites for capture probes; A Y-shaped probe was designed with one end immobilized via Au-S covalent bonding while the two free arms enabled simultaneous dual-target miRNA recognition; By employing Au/TiO-FTO as both the substrate for a custom micro-detection chamber and the working electrode, coupled with catalytic hairpin assembly (CHA), the sensor achieves ultrahigh-precision trace-level detection of dual miRNAs.

View Article and Find Full Text PDF

MicroRNA-21 (miRNA-21), a critical oncogenic biomarker, poses detection challenges due to low abundance and limitations of conventional methods. Herein, we developed a novel CRISPR-SDA biosensing platform by integrating strand displacement amplification (SDA) with CRISPR-Cas12a, leveraging SDA's efficient isothermal amplification of miRNA-21 and Cas12a's precise target recognition and -cleavage activity for signal amplification. Optimized conditions achieved high sensitivity with a detection limit of 10.

View Article and Find Full Text PDF