98%
921
2 minutes
20
Aligned carbon nanotubes (A-CNTs), with atomic-scale thickness and ultrahigh carrier mobility, hold promise for constructing future sub-1 nm node integrated circuits (ICs) with higher speed and lower power consumption. However, the fabricated A-CNT transistors often suffer from the disorder of high-density CNT, which degrade the off-characteristic deviating significantly from theoretical values. Introducing a dual-gate (DG) configuration can provide higher gate control efficiency compared to conventional single-gate (SG) transistors and is expected to enhance the overall performance of A-CNT transistors. However, the reported A-CNT dual-gate field-effect transistors (DG-FETs) still exhibit nonideal switching behavior, and systematic exploration and optimizations for constructing high-performance A-CNT DG structures have been lacking so far. In this work, we conducted a detailed study on the matching issues between the top-gate (TG) and bottom-gate (BG) stacks. By optimizing the gate metal materials and dielectric layer thickness, we enabled 20 nm channel A-CNT DG-FETs to achieve leading switching characteristics, including an on-state current density (I) of up to 1.47 mA/μm, a peak transconductance (G) of 2 mS/μm, a subthreshold slope (SS) as low as 83 mV/decade, and a current on/off ratio of 10. This study provides critical experimental guidance for constructing outstanding A-CNT DG-FETs at advanced technology nodes to compete with cutting-edge silicon-based chips and is also valid for two-dimensional channels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c12453 | DOI Listing |
Nat Comput Sci
September 2025
Department of Chemical Engineering, Tsinghua University, Beijing, China.
With approximately 90% of industrial reactions occurring on surfaces, the role of heterogeneous catalysts is paramount. Currently, accurate surface exposure prediction is vital for heterogeneous catalyst design, but it is hindered by the high costs of experimental and computational methods. Here we introduce a foundation force-field-based model for predicting surface exposure and synthesizability (SurFF) across intermetallic crystals, which are essential materials for heterogeneous catalysts.
View Article and Find Full Text PDFLangmuir
September 2025
College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, PR China.
Hard carbon (HC) has emerged as a promising anode material for sodium-ion batteries (SIBs) owing to its superior sodium storage performance. However, the high cost of conventional HC precursors remains a critical challenge. To address this, coal─a low-cost, carbon-rich precursor─has been explored for HC synthesis.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Ur
Birefringent crystals are pivotal for modern optical modulation technologies, yet developing high-performance birefringent materials with large birefringence (Δn), wide bandgaps, and scalable synthesis remains a significant challenge. Different from the traditional planar [MQ] and distorted [MQ] (n ≥ 4) polyhedral units, a "linear-group" design strategy is proposed, targeting heavy-metal halides with [HgX] (X = halides) coordination modes to exploit their inherent polarizability anisotropy. Through systematic experimental investigations in the ternary A-Hg-X (A = Rb, Cs; X = Br, I) system, six novel Hg-based halides were synthesized.
View Article and Find Full Text PDFPhotosynth Res
September 2025
College of Life Sciences, Shanghai Normal University, Shanghai, 200235, China.
Euglena sanguinea (Ehrenberg 1831) is one of the earliest reported species within the genus Euglena. Its prolific proliferation leading to red algal bloom has garnered significant scientific attention due to its ecological and environmental impacts. Despite this, research on E.
View Article and Find Full Text PDFProtein Pept Lett
September 2025
Center for Advanced Therapeutics, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakornpathom 73170, Thailand.
Background: Bacillus thuringiensis Cry toxins are well known for their insecticidal properties, primarily through the formation of ion-leakage pores via α4-α5 hairpins. His178 in helix 4 of the Cry4Aa mosquito-active toxin has been suggested to play a crucial role in its biotoxicity.
Objective: This study aimed to investigate the functional importance of Cry4Aa-His178 through experimental and computational analyses.