Evaluating the ability of the Wind Erosion Prediction System (WEPS) to simulate near-surface wind speeds in the Inland Pacific Northwest, USA.

Sci Rep

Key Research Institute of Yellow River Civilization and Sustainable Development & Collaborative Innovation Center for Yellow River Civilization, Henan University, Kaifeng, China.

Published: October 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Wind speed is one of the main control factors of wind erosion and dust emissions, which are major problems in arid and semiarid regions of the world. Accurately simulating highly precise hourly wind speeds is critical and cost-efficient for land management decisions with the goal of mitigating wind erosion and land degradation. The Wind Erosion Prediction System (WEPS) is a process-based, daily time-step model that simulates changes in the soil-vegetation-atmosphere. However, to date, relatively few studies have been conducted to test the ability of the WEPS in simulating hourly wind speeds. In this study, the performance of the WEPS model was tested in the Inland Pacific Northwest (iPNW), where wind erosion is a serious problem. Hourly wind speeds were observed and simulated by the WEPS at 13 meteorological stations from 2009 to 2018 using the WEPS hourly wind speed probability histogram. Owing to increasing wind shear, the model is not as precise in reproducing high wind speeds. The WEPS inadequately simulated the hourly wind speeds at six of the 13 stations, with a low index of agreement (d < 0.5). The complex regional topography may be one of the reasons for this lack of agreement, because the WEPS's performance of interpolation relies on spatial distances and surface complexity. Therefore, we validated the model using another wind-speed database to eliminate the impact of spatial interpolation. The performance of the WEPS was improved after removing the impact of spatial interpolation, producing d values > 0.5 at nine of the 13 stations. Our results suggest that the WEPS can accurately simulate hourly wind speeds and assess wind erosion in the absence of interpolation, whereas the model may be uncertain when invoking spatial interpolation. Some evidence also suggests that the model may have a tendency to underestimate observed hourly wind speeds. Pragmatically, this suggests that model users should consider the possibility that WEPS may underestimate wind erosion risk in the iPNW and plan implementation of conservation practices accordingly.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11467192PMC
http://dx.doi.org/10.1038/s41598-024-74714-9DOI Listing

Publication Analysis

Top Keywords

wind speeds
24
wind erosion
20
hourly wind
20
wind
14
erosion prediction
8
prediction system
8
system weps
8
inland pacific
8
pacific northwest
8
wind speed
8

Similar Publications

A method is presented for determining the significant parameters, maximum wind speed and radius of maximum wind speed, of the surface winds associated with a hurricane. The method is based on Bayesian inversion, using Markov chain Monte Carlo sampling. Underwater acoustic measurements are used to estimate parameters in the axisymmetric Holland model for hurricane surface winds.

View Article and Find Full Text PDF

Unlabelled: Microhabitat heterogeneity results in significant variations in the thermal environment on a small spatial scale, leading to different intensities of cold stress during extreme low-temperature events. Investigating variations in body temperature and metabolomic responses of organisms inhabiting different microhabitats emerges as an important task for understanding how organisms respond to more frequent extreme low-temperature events in the face of climate change. In the present study, we measured substrate temperature, air temperature, wind speed, light intensity, and body temperature to evaluate the relative importance of drivers that affect body temperature in different microhabitats, and determined the metabolomic responses of intertidal snails and limpets from different microhabitats (snail: exposed vs.

View Article and Find Full Text PDF

Individuals who work in the heat, such as military personnel and athletes, are often required to rapidly transition from temperate or cooler climates to hot environments. Thus, acclimation strategies are needed for individuals lacking access to hot weather. We sought to develop and validate a practical exercise with overdressing protocol for heat acclimation.

View Article and Find Full Text PDF

Modelling nitrogen dioxide dispersion in urban street canyons through sensor-based emission assessment.

J Environ Manage

September 2025

Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Drive, Boulder, CO, USA. Electronic address:

This study assesses the performance of the ADMS-Urban dispersion model in estimating 1-h mean nitrogen dioxide (NO) concentrations within the street canyons of Prague. While traditional air quality modeling that relies on sparse data from localized monitoring stations, this approach pioneers the integration of traffic, background, and rooftop sensor network, to archive a more granular validation of model outputs. The results demonstrate robust model performance, with FAC2 values ranging from 0.

View Article and Find Full Text PDF

Renewable energy systems are at the core of global efforts to reduce greenhouse gas (GHG) emissions and to combat climate change. Focusing on the role of energy storage in enhancing dependability and efficiency, this paper investigates the design and optimization of a completely sustainable hybrid energy system. Furthermore, hybrid storage systems have been used to evaluate their viability and cost-benefits.

View Article and Find Full Text PDF