Renewable energy systems are at the core of global efforts to reduce greenhouse gas (GHG) emissions and to combat climate change. Focusing on the role of energy storage in enhancing dependability and efficiency, this paper investigates the design and optimization of a completely sustainable hybrid energy system. Furthermore, hybrid storage systems have been used to evaluate their viability and cost-benefits.
View Article and Find Full Text PDFMaximum Power Point Tracking (MPPT) is a promising technology for extracting peak power from single or multiple solar modules for improving Photovoltaic (PV) system performance and satisfying economic operation. The tracker should continuously follow the MPP of the PV module at all operating and weather conditions. The Particle Swarm Optimization (PSO) algorithm represents a powerful optimal MPP tracker due to its simplicity and has enhanced greatest exploration characteristics.
View Article and Find Full Text PDFRecent research has concentrated on emphasizing the significance of incorporating renewable distributed generations (RDGs), like photovoltaic (PV) and wind turbines (WTs), into the distribution system to address issues related to distributed generation (DG) allocation. The key implications of integrating RDGs include the improvement of voltage profiles and the minimization of power losses. Various optimization techniques, namely Salp Swarm Algorithm (SSA), Marine Predictor Algorithm (MPA), Grey Wolf Optimizer (GWO), Improved Grey Wolf Optimizer (IGWO), and Seagull Optimization Algorithm (SOA), have been applied to achieve optimal allocation and sizing of RDGs in radial distributed systems (RDS).
View Article and Find Full Text PDFThis paper provides six metaheuristic algorithms, namely Fast Cuckoo Search (FCS), Salp Swarm Algorithm (SSA), Dynamic control Cuckoo search (DCCS), Gradient-Based Optimizer (GBO), Northern Goshawk Optimization (NGO), Opposition Flow Direction Algorithm (OFDA) to efficiently solve the optimal power flow (OPF) issue. Under standard and conservative operating settings, the OPF problem is modeled utilizing a range of objectives, constraints, and formulations. Five case studies have been conducted using IEEE 30-bus and IEEE 118-bus standard test systems to evaluate the effectiveness and robustness of the proposed algorithms.
View Article and Find Full Text PDFIn this paper, the problem of scheduling smart homes (SHs) residential loads is considered aiming to minimize electricity bills and enhance the user comfort. The problem is addressed as a multi-objective constraint mixed-integer optimization problem (CP-MIP) to model the constrained load operation. As the CP-MIP optimization problem is non-convex, a novel hybrid search technique, that combines the Relaxation and Rounding (RnR) approach and metaheuristic algorithms to enhance the accuracy and relevance of decision variables, is proposed.
View Article and Find Full Text PDFThis study deals with the finite-time synchronization problem of a class of switched complex dynamical networks (CDNs) with distributed coupling delays via sampled-data control. First, the dynamical model is studied with coupling delays in more detail. The sampling system is then converted to a continuous time-delay system using an input delay technique.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
September 2020
Providing access to clean, reliable, and affordable energy by adopting hybrid power systems is important for countries looking to achieve their sustainable development goals. This paper presents an optimization method for sizing a hybrid system including photovoltaic (PV), wind turbines with a hydroelectric pumped storage system. In this paper, the implementation of different optimization techniques has been investigated to achieve optimal sizing of grid-connected hybrid renewable energy systems.
View Article and Find Full Text PDF