Modelling nitrogen dioxide dispersion in urban street canyons through sensor-based emission assessment.

J Environ Manage

Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Drive, Boulder, CO, USA. Electronic address:

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study assesses the performance of the ADMS-Urban dispersion model in estimating 1-h mean nitrogen dioxide (NO) concentrations within the street canyons of Prague. While traditional air quality modeling that relies on sparse data from localized monitoring stations, this approach pioneers the integration of traffic, background, and rooftop sensor network, to archive a more granular validation of model outputs. The results demonstrate robust model performance, with FAC2 values ranging from 0.307 to 0.552, NMSE consistently below 1.8, and fractional bias (FB) largely within ±0.4. Notably, the rooftop sensors exhibited a higher FB of 0.775, suggesting reduced accuracy in zones with lower ambient concentrations and complex vertical mixing. Spatial mapping revealed that NO concentrations exceeded 50 μg/m at key traffic intersections, driven by vehicle idling, congestion, and restricted dispersion within enclosed canyon geometries. Street morphology played a critical role in pollutant retention, with narrow, high-walled corridors accumulating higher NO loads than broader, vegetated streets that allowed greater airflow and dilution. Temporal analysis indicated a marked seasonal trend, with elevated concentrations during the colder months (October to February), reflecting increased vehicular activity and meteorological influences such as lower wind speeds and temperature inversions. Overall, the findings confirm the ADMS-Urban model's capacity to accurately reflect both spatial and temporal variability in urban NO distribution. The results underscore the interplay between urban form, traffic dynamics, and pollutant dispersion, offering valuable insights for air quality planning in similarly dense urban environments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2025.127149DOI Listing

Publication Analysis

Top Keywords

nitrogen dioxide
8
street canyons
8
air quality
8
modelling nitrogen
4
dispersion
4
dioxide dispersion
4
urban
4
dispersion urban
4
urban street
4
canyons sensor-based
4

Similar Publications

Background: Bladder cancer represents a significant global health challenge, characterized by poorly understood risk factors. This study aims to synthesize meta-analytical evidence, quantify risk associations, and inform prevention strategies.

Methods: We conducted a comprehensive literature search in PubMed, Embase, Web of Science, and Cochrane Library up to October 2024.

View Article and Find Full Text PDF

NO reduction to HONO by small α-hydroxycarbonyls: a laboratory investigation relevant to nighttime production of atmospheric HONO.

Phys Chem Chem Phys

September 2025

School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja S C Mullick Road, Jadavpur, Kolkata 700032, India.

This work presents a gas-phase experimental study on the reduction of NO (nitrogen dioxide) to HONO (nitrous acid) by two atmospherically significant volatile organic compounds (VOCs), namely, glycolaldehyde (Gla) and hydroxyacetone (HAc), under a simulated tropospheric condition. FTIR spectroscopic probing reveals that HONO is the only gaseous reduced product of NO in each reaction. The measured data indicate that the reactions in both cases occur in a 2 : 1 stoichiometry with respect to NO and Gla/HAc.

View Article and Find Full Text PDF

Fast-hyperspectral imaging remote sensing: Emission quantification of NO and SO from marine vessels.

Light Sci Appl

September 2025

Key Lab of Environmental Optics & Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 230031, Hefei, China.

Marine vessels play a vital role in the global economy; however, their negative impact on the marine atmospheric environment is a growing concern. Quantifying marine vessel emissions is an essential prerequisite for controlling these emissions and improving the marine atmospheric environment. Optical imaging remote sensing is a vital technique for quantifying marine vessel emissions.

View Article and Find Full Text PDF

Synergistic interface and oxygen/nitrogen vacancy engineering in g-CN/CuO under high pressure for efficient CO photoreduction.

J Colloid Interface Sci

September 2025

WPI, International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan; Mitsui Chemicals, Inc -.Carbon Neutral Research Center (MCI-CNRC), Kyushu University, Fukuoka 819-0395, Japan. Electronic address:

This study explores highly active nitride-based g-CN/CuO photocatalysts for CO photoconversion by synthesizing them through high-pressure torsion (HPT) straining. Data indicate that increasing the applied strain under high pressure promotes vacancy formation and improves the electronic interaction at the g-CN/CuO interphases, enabling superior charge separation and extended light absorption. The generation of dual vacancies of oxygen and nitrogen is verified by electron paramagnetic resonance and Fourier transform infrared spectroscopic methods, and the generation of a type-II heterojunction is confirmed by band structure analysis.

View Article and Find Full Text PDF

Ultrasmall MoC-MoO Heterojunction Coupled with Nitrogen-Doped Reduced Graphene for Boosting the Deep Oxidative Desulfurization of Fuel Oils.

Langmuir

September 2025

Engineering Technology Research Center of Preparation and Application of Industrial Ceramics of Anhui Province, Engineering Research Center of High-frequency Soft Magnetic Materials and Ceramic Powder Materials of Anhui Province, School of Chemistry and Material Engineering, Chaohu University, Chaoh

In this study, a MoC-MoO@NCrGO-900 composite catalyst comprising two-dimensional nitrogen-doped reduced graphene oxide (NCrGO) and ultrasmall molybdenum carbide-molybdenum dioxide (MoC-MoO) heterojunctions was synthesized. The optimized catalyst exhibited an outstanding oxidative desulfurization (ODS) performance. Specifically, a model oil containing 4000 ppm sulfur was completely desulfurized within 30 min, with a desulfurization efficiency of 98.

View Article and Find Full Text PDF