98%
921
2 minutes
20
Recent studies have identified a family of rod-shaped proteins thought to mediate lipid transfer at intracellular membrane contacts by a bridge-like mechanism. We show one such protein, bridge-like lipid transfer protein 3A (BLTP3A)/UHRF1BP1 binds VAMP7 vesicles via its C-terminal region and anchors them to lysosomes via its chorein domain containing N-terminal region to Rab7. Upon lysosome damage, BLTP3A-positive vesicles rapidly (within minutes) dissociate from lysosomes. Lysosome damage is known to activate the CASM (Conjugation of ATG8 to Single Membranes) pathway leading to lipidation and recruitment to lysosomes of mammalian ATG8 (mATG8) proteins. We find that this process drives the reassociation of BLTP3A with damaged lysosomes via an interaction of its LIR motif with mATG8 which coincides with a dissociation from the vesicles. Our findings reveal that BLTP3A is an effector of CASM, potentially as part of a mechanism to help repair or minimize lysosome damage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11463362 | PMC |
http://dx.doi.org/10.1101/2024.09.28.615015 | DOI Listing |
Sci China Life Sci
September 2025
The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, 100871, China.
Hutchinson-Gilford progeria syndrome (HGPS) is a rare progeroid disorder, and approximately 90% of cases are caused by LMNA mutation that yields the lamin A/C variant progerin. Progerin is toxic, and its clearance and disruption have positive benefits on HGPS cells and mice and even HGPS patients. However, accelerating progerin clearance is still an unaddressed issue.
View Article and Find Full Text PDFCell Signal
September 2025
Departments of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA. Electronic address:
Mature mRNAs are generated by spliceosomes that recruit factors to aid RNA splicing in which introns are removed and exons joined. Among the splicing factors, a family of proteins contain a homologous U2 Auxiliary Factor (U2AF) Homology Motif (UHM) to bind with factors containing U2AF ligand motifs (ULM) and recruit them to regulate 3' splice site selection. Mutations and overexpression of UHM splicing factors are frequently found in cancers.
View Article and Find Full Text PDFFront Cell Dev Biol
August 2025
Laboratory of Rheumatology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
Introduction: Nephropathic cystinosis is a rare genetic disorder characterized by cystine accumulation in lysosomes that causes early renal dysfunction and progressive chronic kidney disease. Although several metabolic pathways, including oxidative stress and inflammation, have been implicated in the progression of renal parenchyma damage, the precise mechanisms driving its progression are not fully understood. Recent studies suggest that epigenetic modifications, particularly DNA methylation (DNAm), play a critical role in the development of chronic kidney disease.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR C
Silicon dioxide nanoparticles (SiO NPs) are a novel material with a wide range of applications whose cumulative effects in the body pose certain health risks. The types of gastric injuries caused by different-sized SiO NPs and their mechanisms, however, remain unclear. Based on this, we established a mouse subchronic exposure model (10 mg/kg/d, 21 consecutive days of tube-feeding) with different SiO NP sizes (50, 300, and 1000 nm) in conjunction with in vitro MC9 and BMMCs models (160 μg/mL exposure for 24 h) to explore the gastric injury mechanisms.
View Article and Find Full Text PDFChem Biol Interact
September 2025
Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions, Reproductive Medicine of Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for National
Aluminum is a lightweight and corrosion-resistant metal element that is widely used in industries, construction, food, and pharmaceuticals, and it can adversely affect multiple organ systems including the nervous system, skeletal system, reproductive system, blood system, and immune system. In present study, we investigated the effects of aluminum exposure on mammalian embryo development. Our data demonstrate that aluminum exposure induces mouse early embryo development defects, including those at the zygotes and 2-cell stages, causing a decrease in general transcription activity.
View Article and Find Full Text PDF