Publications by authors named "Kenshiro Fujise"

BLTP2/KIAA0100, a bridge-like lipid transfer protein, was reported to localize at contacts of the ER with either the plasma membrane (PM) or recycling tubular endosomes depending on the cell type. Our findings suggest that mediating bulk lipid transport between the ER and the PM is a key function of this protein, as BLTP2 tethers the ER to tubular endosomes only after they become continuous with the PM and that it also tethers the ER to macropinosomes in the process of fusing with the PM. We further identify interactions underlying binding of BLTP2 to the PM, including phosphoinositides, the adaptor proteins FAM102A/FAM102B, and N-BAR domain proteins at membrane-connected tubules.

View Article and Find Full Text PDF

BLTP2/KIAA0100, a bridge-like lipid transfer protein, was reported to localize at contacts of the endoplasmic reticulum (ER) with either the plasma membrane (PM) or recycling tubular endosomes depending on the cell type. Our findings suggest that mediating bulk lipid transport between the ER and the PM is a key function of this protein as BLTP2 tethers the ER to tubular endosomes only after they become continuous with the PM and that it also tethers the ER to macropinosomes in the process of fusing with the PM. We further identify interactions underlying binding of BLTP2 to the PM, including phosphoinositides, the adaptor proteins FAM102A and FAM102B, and also N-BAR domain proteins at membrane-connected tubules.

View Article and Find Full Text PDF

The dysfunction of dopaminergic (DA) neurons is central to Parkinson's disease. Distinct synaptic vesicle (SV) populations, differing in neurotransmitter content (dopamine vs. glutamate), may vary due to differences in trafficking and exocytosis.

View Article and Find Full Text PDF

The role of primary cilia has recently garnered significant attention in the field of neurodegeneration. This review explores the diversity of primary cilia in the mature brain and their interrelationships with a multitude of cellular structures, including axons and synapses. Importantly, an overview of the growing prominence of ciliary-related dysfunctions in neurodegenerative diseases is summarized, with a special emphasis on Parkinson's disease (PD) and neuropsychiatric disorders.

View Article and Find Full Text PDF

Recent studies have identified a family of rod-shaped proteins thought to mediate lipid transfer at intracellular membrane contacts by a bridge-like mechanism. We show one such protein, bridge-like lipid transfer protein 3A (BLTP3A)/UHRF1BP1 binds VAMP7 vesicles via its C-terminal region and anchors them to lysosomes via its chorein domain containing N-terminal region to Rab7. Upon lysosome damage, BLTP3A-positive vesicles rapidly (within minutes) dissociate from lysosomes.

View Article and Find Full Text PDF

Members of the synaptophysin and synaptogyrin family are vesicle proteins with four transmembrane domains. In spite of their abundance in synaptic vesicle (SV) membranes, their role remains elusive and only mild defects at the cellular and organismal level are observed in mice lacking one or more family members. Here, we show that coexpression with synapsin in fibroblasts of each of the four brain-enriched members of this family-synaptophysin, synaptoporin, synaptogyrin 1, and synaptogyrin 3-is sufficient to generate clusters of small vesicles in the same size range of SVs.

View Article and Find Full Text PDF

Synaptojanin-1 (SJ1) is a major neuronal-enriched PI(4, 5)P 4- and 5-phosphatase implicated in the shedding of endocytic factors during endocytosis. A mutation (R258Q) that impairs selectively its 4-phosphatase activity causes Parkinsonism in humans and neurological defects in mice (SJ1KI mice). Studies of these mice showed, besides an abnormal assembly state of endocytic factors at synapses, the presence of dystrophic nerve terminals selectively in a subset of nigro-striatal dopamine (DA)-ergic axons, suggesting a special lability of DA neurons to the impairment of SJ1 function.

View Article and Find Full Text PDF

Synaptojanin-1 (SJ1) is a major neuronal-enriched PI(4,5)P 4- and 5-phosphatase implicated in the shedding of endocytic factors during endocytosis. A mutation (R258Q) that impairs selectively its 4-phosphatase activity causes Parkinsonism in humans and neurological defects in mice (SJ1KI mice). Studies of these mice showed, besides an abnormal assembly state of endocytic factors at synapses, the presence of dystrophic nerve terminals selectively in a subset of nigro-striatal dopamine (DA)-ergic axons, suggesting a special lability of DA neurons to the impairment of SJ1 function.

View Article and Find Full Text PDF

Centronuclear myopathy (CNM) is a congenital myopathy characterised by centralised nuclei in skeletal myofibers. T-tubules, sarcolemmal invaginations required for excitation-contraction coupling, are disorganised in the skeletal muscles of CNM patients. Previous studies showed that various endocytic proteins are involved in T-tubule biogenesis and their dysfunction is tightly associated with CNM pathogenesis.

View Article and Find Full Text PDF

A centronuclear myopathy (CNM) is a group of inherited congenital diseases showing clinically progressive muscle weakness associated with the presence of centralized myonuclei, diagnosed by genetic testing and muscle biopsy. The gene encoding dynamin 2, DNM2, has been identified as a causative gene for an autosomal dominant form of CNM. However, the information of a DNM2 variant alone is not always sufficient to gain a definitive diagnosis as the pathogenicity of many gene variants is currently unknown.

View Article and Find Full Text PDF

Podosomes are actin-rich adhesion structures formed in a variety of cell types, such as monocytic cells or cancer cells, to facilitate attachment to and degradation of the extracellular matrix (ECM). Previous studies showed that dynamin 2, a large GTPase involved in membrane remodeling and actin organization, is required for podosome function. However, precise roles of dynamin 2 at the podosomes remain to be elucidated.

View Article and Find Full Text PDF

Membrane remodeling is required for dynamic cellular processes such as cell division, polarization, and motility. BAR domain proteins and dynamins are key molecules in membrane remodeling that work together for membrane deformation and fission. In striated muscles, sarcolemmal invaginations termed T-tubules are required for excitation-contraction coupling.

View Article and Find Full Text PDF

The activity of AMPA-type glutamate receptor is involved in insulin release from pancreatic β-cells. However, the mechanism and dynamics that underlie AMPA receptor-mediated insulin release in β-cells is largely unknown. Here, we show that AMPA induces internalization of glutamate receptor 2/3 (GluR2/3), AMPA receptor subtype, in the mouse β-cell line MIN6.

View Article and Find Full Text PDF

Subsequently to the publication of the above article, the authors have realized that the second‑listed author, The Mon La, had not been properly credited as one of the co‑writers of the paper. Therefore, the Authors' Contributions of the Declarations section of the article should have read as follows: Authors' contributions HY, KTa and TML designed the research and wrote the paper. HY, TA, YM, EO and TT performed mutant protein construction, protein purification and actin bundling experiments.

View Article and Find Full Text PDF

Dynamin copolymerizes with cortactin to form a ring‑like complex that bundles and stabilizes actin filaments. Actin bundle formation is crucial for generation of filopodia and lamellipodia, which guide migration, invasion, and metastasis of cancer cells. However, it is unknown how the dynamin‑cortactin complex regulates actin bundle formation.

View Article and Find Full Text PDF