Publications by authors named "Satoru Noguchi"

GNE myopathy is an autosomal recessive distal myopathy resulting from biallelic pathogenic variants in the GNE gene, a key enzyme in sialic acid biosynthesis. Although most pathogenic variants are missense variants, recent advances have enabled the identification of copy number variations, deep intronic variants, and regulatory changes in the promoter region, significantly enhancing diagnostic accuracy. Progress in genetic diagnostics now allows detection of rare and complex variants.

View Article and Find Full Text PDF

Type 1 ryanodine receptor (RyR1) is a Ca release channel in the sarcoplasmic reticulum in skeletal muscle. In excitation-contraction (E-C) coupling, RyR1 opens by depolarization of transverse tubule membrane via physical interaction with dihydropyridine receptor, which is referred to as depolarization-induced Ca release (DICR). RyR1 can also be gated via Ca-induced Ca release (CICR), in which binding of Ca directly opens the channel.

View Article and Find Full Text PDF

Purpose: Collagen VI-related muscular dystrophies, characterized by proximal muscle weakness and joint contractures, are caused by pathogenic variants in the genes, COL6A1 to COL6A3. A monoallelic variant at the last nucleotide of a COL6A1 exon was initially classified as a missense variant but acted as a splicing variant, resulting in exon skipping. Here, we evaluated whether single-nucleotide variants at the 3'-ends of COL6A1 to COL6A3 exons cause aberrant splicing.

View Article and Find Full Text PDF

It is still unknown whether anti-mitochondrial M2 antibody (AM2A)-positive myositis is an independent subtype of autoimmune myositis (AIM). As such, the aim of this study is to better characterize the clinicopathological features in a large cohort of patients. This study utilized the muscle biopsy samples from AM2A-positive patients, which were sent to the National Center of Neurology and Psychiatry for diagnostic purposes from January 2008 to December 2020.

View Article and Find Full Text PDF

Background: Sarcoglycanopathies (SGPs) are limb-girdle muscular dystrophies (LGMDs) that can be classified into four types, LGMDR3, LGMDR4, LGMDR5, and LGMDR6, caused by mutations in the genes, SGCA, SGCB, SGCG, and SGCD, respectively. SGPs are relatively rare in Japan. This study aims to profile the genetic variants that cause SGPs in Japanese patients.

View Article and Find Full Text PDF

Objectives: Collagen VI-related myopathy spans a clinical continuum from severe Ullrich congenital muscular dystrophy to milder Bethlem myopathy, caused by genetic variants in , , and genes. Our objective was to report a newly identified patient with the pathogenic variants restricted to a polyadenylation signal in the 3'-untranslated region, which have not been reported in hereditary muscle disease.

Methods: We performed clinicopathologic diagnosis and analysis using whole-genome and RNA sequencing.

View Article and Find Full Text PDF

Background And Objectives: Oculopharyngodistal myopathy (OPDM) is an autosomal dominant myopathy clinically characterized by distal muscle weakness. Even though the identification of four causative genes, LRP12, GIPC1, NOTCH2NLC and RILPL1, it is unclear whether the myopathy progressed similarly among OPDM subtypes. We aimed to establish diagnostic clues in muscle imaging of OPDM in comparison with clinicopathologically similar oculopharyngeal muscular dystrophy (OPMD).

View Article and Find Full Text PDF

Fukutin () c.647+2084G>T creates a pseudo-exon with a premature stop codon, which causes Fukuyama congenital muscular dystrophy (FCMD). We aimed to ameliorate aberrant splicing of caused by this variant.

View Article and Find Full Text PDF

Identification of antisynthetase syndrome (ASS) could be challenging due to inaccessibility and technical difficulty of the serology test for the less common non-Jo-1 antibodies. This study aimed to describe ASS antibody-specific myopathology and evaluate the diagnostic utility of myofiber HLA-DR expression. We reviewed 212 ASS muscle biopsies and compared myopathologic features among subtypes.

View Article and Find Full Text PDF

GNE myopathy is a distal myopathy caused by biallelic variants in GNE, which encodes a protein involved in sialic acid biosynthesis. Compound heterozygosity of the second most frequent variant among Japanese GNE myopathy patients, GNE c.620A>T encoding p.

View Article and Find Full Text PDF

DnaJ homolog, subfamily B, member 4, a member of the heat shock protein 40 chaperones encoded by DNAJB4, is highly expressed in myofibers. We identified a heterozygous c.270 T > A (p.

View Article and Find Full Text PDF

Background: A number of clinical trials targeting GNE myopathy patients have been conducted. However, useful clinical parameters for postmarketing surveillance and long-term clinical observation have not yet been established.

Objective: We conducted a 5-year observational follow-up natural history study to identify evaluation parameters, which may be useful for the long-term observation of GNE myopathy patients.

View Article and Find Full Text PDF

Oculopharyngodistal myopathy (OPDM) and oculopharyngeal muscular dystrophy (OPMD) are similar and even believed to be indistinguishable in terms of their myopathological features. To address the diagnostic gap, we evaluated the muscle biopsy samples for p62 expression by immunohistochemistry and compared the occurrence and the frequency of intranuclear inclusions among the individuals with OPDM (harboring CGG repeat expansion in LRP12 (n = 19), GIPC1 (n = 6), or NOTCH2NLC (n = 7)), OPMD (n = 15), and other rimmed vacuolar myopathies. We found that myonuclei with p62-positive intra-nuclear inclusions (myo-INIs) were significantly more frequent in OPMD (11.

View Article and Find Full Text PDF

Background: Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant muscular disorder characterized by asymmetric muscle wasting and weakness. FSHD can be subdivided into two types: FSHD1, caused by contraction of the D4Z4 repeat on chromosome 4q35, and FSHD2, caused by mild contraction of the D4Z4 repeat plus aberrant hypomethylation mediated by genetic variants in SMCHD1, DNMT3B, or LRIF1. Genetic diagnosis of FSHD is challenging because of the complex procedures required.

View Article and Find Full Text PDF

Type 1 ryanodine receptor (RYR1) is a Ca2+ release channel in the sarcoplasmic reticulum (SR) of the skeletal muscle and plays a critical role in excitation-contraction coupling. Mutations in RYR1 cause severe muscle diseases, such as malignant hyperthermia, a disorder of Ca2+-induced Ca2+ release (CICR) through RYR1 from the SR. We recently reported that volatile anesthetics induce malignant hyperthermia (MH)-like episodes through enhanced CICR in heterozygous R2509C-RYR1 mice.

View Article and Find Full Text PDF

Dystrophinopathy is caused by alterations in DMD. Approximately 1% of patients remain genetically undiagnosed, because intronic variations are not detected by standard methods. Here, we combined laboratory and in silico analyses to identify disease-causing genomic variants in genetically undiagnosed patients and determine the regulatory mechanisms underlying abnormal DMD transcript generation.

View Article and Find Full Text PDF

Purpose Of Review: GNE myopathy is a rare autosomal recessive disease caused by biallelic variants in the GNE gene, which encodes an enzyme involved in sialic acid biosynthesis. No drugs are approved for the treatment of GNE myopathy. Following proof-of-concept of sialic acid supplementation efficacy in mouse models, multiple clinical trials have been conducted.

View Article and Find Full Text PDF

Thermoregulation is an important aspect of human homeostasis, and high temperatures pose serious stresses for the body. Malignant hyperthermia (MH) is a life-threatening disorder in which body temperature can rise to a lethal level. Here we employ an optically controlled local heat-pulse method to manipulate the temperature in cells with a precision of less than 1 °C and find that the mutants of ryanodine receptor type 1 (RyR1), a key Ca release channel underlying MH, are heat hypersensitive compared with the wild type (WT).

View Article and Find Full Text PDF

Centronuclear myopathy (CNM) is a congenital myopathy characterised by centralised nuclei in skeletal myofibers. T-tubules, sarcolemmal invaginations required for excitation-contraction coupling, are disorganised in the skeletal muscles of CNM patients. Previous studies showed that various endocytic proteins are involved in T-tubule biogenesis and their dysfunction is tightly associated with CNM pathogenesis.

View Article and Find Full Text PDF

Background And Objectives: Pompe disease is reportedly less prevalent in Japan than in neighbouring countries, raising a possibility that some patients may be overlooked. Therefore, all muscle biopsy samples received at our institute were screened for Pompe disease to determine the accuracy of the disease prevalence.

Methods: The acid α-glucosidase (GAA) activity was assayed using 10 µm frozen muscle sections from 2408 muscle biopsies received between July 2015 and January 2018.

View Article and Find Full Text PDF

Objectives: The main objective of this case report is to identify a gene associated with a Japanese family with autosomal dominant arthrogryposis.

Methods: We performed clinicopathologic diagnosis and genomic analysis using trio-based exome sequencing.

Results: A 14-year-old boy had contractures in the proximal joints, and the serum creatine kinase level was elevated.

View Article and Find Full Text PDF

Aims: Oculopharyngodistal myopathy (OPDM) is caused by the expansion of CGG repeats in NOTCH2NLC (OPDM_NOTCH2NLC) GIPC1 (OPDM_GIPC1), or LRP12 (OPDM_LRP12). Neuronal intranuclear inclusion disease (NIID) is clinically distinct from OPDM but is also caused by the expansion of CGG repeats in NOTCH2NLC, which may be an indicator of intranuclear inclusion in skin biopsy. We investigated the presence of intranuclear inclusions in skin biopsies from patients with OPDM and muscle diseases with a similar pathology to evaluate whether they will have similar diagnostic findings on skin biopsy.

View Article and Find Full Text PDF