Purpose: Collagen VI-related muscular dystrophies, characterized by proximal muscle weakness and joint contractures, are caused by pathogenic variants in the genes, COL6A1 to COL6A3. A monoallelic variant at the last nucleotide of a COL6A1 exon was initially classified as a missense variant but acted as a splicing variant, resulting in exon skipping. Here, we evaluated whether single-nucleotide variants at the 3'-ends of COL6A1 to COL6A3 exons cause aberrant splicing.
View Article and Find Full Text PDFMol Ther Nucleic Acids
September 2023
Fukutin () c.647+2084G>T creates a pseudo-exon with a premature stop codon, which causes Fukuyama congenital muscular dystrophy (FCMD). We aimed to ameliorate aberrant splicing of caused by this variant.
View Article and Find Full Text PDFGNE myopathy is a distal myopathy caused by biallelic variants in GNE, which encodes a protein involved in sialic acid biosynthesis. Compound heterozygosity of the second most frequent variant among Japanese GNE myopathy patients, GNE c.620A>T encoding p.
View Article and Find Full Text PDFActa Neuropathol
February 2023
DnaJ homolog, subfamily B, member 4, a member of the heat shock protein 40 chaperones encoded by DNAJB4, is highly expressed in myofibers. We identified a heterozygous c.270 T > A (p.
View Article and Find Full Text PDFBackground: Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant muscular disorder characterized by asymmetric muscle wasting and weakness. FSHD can be subdivided into two types: FSHD1, caused by contraction of the D4Z4 repeat on chromosome 4q35, and FSHD2, caused by mild contraction of the D4Z4 repeat plus aberrant hypomethylation mediated by genetic variants in SMCHD1, DNMT3B, or LRIF1. Genetic diagnosis of FSHD is challenging because of the complex procedures required.
View Article and Find Full Text PDFDystrophinopathy is caused by alterations in DMD. Approximately 1% of patients remain genetically undiagnosed, because intronic variations are not detected by standard methods. Here, we combined laboratory and in silico analyses to identify disease-causing genomic variants in genetically undiagnosed patients and determine the regulatory mechanisms underlying abnormal DMD transcript generation.
View Article and Find Full Text PDFBackground: Collagen VI-related dystrophy spans a clinical continuum from severe Ullrich congenital muscular dystrophy to milder Bethlem myopathy. This disease is caused by causative variants in COL6A1, COL6A2, or COL6A3. Most reported causative variants are de novo; therefore, to identify possible associated causative variants, comprehensive large cohort studies are required for different ethnicities.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is an X-linked genetic disorder characterized by progressive muscular weakness because of the loss of dystrophin. Extracellular Ca2+ flows into the cytoplasm through membrane tears in dystrophin-deficient myofibers, which leads to muscle contracture and necrosis. Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) takes up cytosolic Ca2+ into the sarcoplasmic reticulum, but its activity is decreased in dystrophic muscle.
View Article and Find Full Text PDFJ Neuropathol Exp Neurol
December 2020
Typical central core disease (CCD) is characterized pathologically by the presence of a core and is accompanied by type 1 fiber uniformity. Congenital neuromuscular disease with uniform type 1 fiber (CNMDU1) is characterized pathologically by the presence of type 1 fiber uniformity but without the abnormal structural changes in muscle fibers. Interestingly, typical CCD and 40% of CNMDU1 cases are caused by the same mutations in RYR1, and thus CNMDU1 has been considered an early precursor to CCD.
View Article and Find Full Text PDFObjective: Facioscapulohumeral muscular dystrophy (FSHD) is a heterogenetic disorder predominantly characterized by progressive facial and scapular muscle weakness. Patients with FSHD either have a contraction of the D4Z4 repeat on chromosome 4q35 or mutations in D4Z4 chromatin modifiers SMCHD1 and DNMT3B, both causing D4Z4 chromatin relaxation and inappropriate expression of the D4Z4-encoded gene in skeletal muscle. In this study, we tested the hypothesis whether , a known SMCHD1 protein interactor, is a disease gene for idiopathic FSHD2.
View Article and Find Full Text PDFCongenital muscular dystrophies with collagen VI deficiency are inherited muscle disorders with a broad spectrum of clinical presentation and are caused by mutations in one of COL6A1-3 genes. Muscle pathology is characterized by fiber size variation and increased interstitial fibrosis and adipogenesis. In this study, we define critical events that contribute to muscle weakness and fibrosis in a mouse model with collagen VI deficiency.
View Article and Find Full Text PDFDanon disease, primary lysosome-associated membrane protein-2 (LAMP-2) deficiency, is characterized clinically by cardiomyopathy, myopathy and intellectual disability in boys. Because Danon disease is inherited in an X-linked dominant fashion, males are more severely affected than females, who usually have only cardiomyopathy without myopathy or intellectual disability; moreover, the onset of symptoms in females is usually in adulthood. We describe a girl with Danon disease who presented with hypertrophic cardiomyopathy and Wolff-Parkinson-White (WPW) syndrome at 12 years of age.
View Article and Find Full Text PDFObjective: To determine the genetic variants in patients with dystroglycanopathy (DGP) and assess the pathogenicity of these variants.
Methods: A total of 20 patients with DGP were identified by immunohistochemistry or Western blot analysis. Whole-exome sequencing (WES) was performed using patient samples.
Background: Transport protein particle (TRAPP) is a multiprotein complex involved in endoplasmic reticulum-to-Golgi trafficking. Zebrafish with a mutation in the TRAPPC11 orthologue showed hepatomegaly with steatosis and defects in visual system development. In humans, TRAPPC11 mutations have been reported in only three families showing limb-girdle muscular dystrophy (LGMD) or myopathy with movement disorders and intellectual disability.
View Article and Find Full Text PDFUllrich congenital muscular dystrophy (UCMD) is an inherited muscle disorder characterized clinically by muscle weakness, distal joint hyperlaxity, and proximal joint contractures. Sporadic and recessive mutations in the three collagen VI genes, COL6A1, COL6A2, and COL6A3, are reported to be causative. In the sporadic forms, a heterozygous point mutation causing glycine substitution in the triple helical domain has been identified in higher rate.
View Article and Find Full Text PDFAlpha-dystroglycanopathy is caused by the glycosylation defects of α-dystroglycan (α-DG). The clinical spectrum ranges from severe congenital muscular dystrophy (CMD) to later-onset limb girdle muscular dystrophy (LGMD). Among all α-dystroglycanopathies, LGMD type 2I caused by FKRP mutations is most commonly seen in Europe but appears to be rare in Asia.
View Article and Find Full Text PDFCaveolae are invaginations of the plasma membrane involved in many cellular processes, including clathrin-independent endocytosis, cholesterol transport, and signal transduction. They are characterized by the presence of caveolin proteins. Mutations that cause deficiency in caveolin-3, which is expressed exclusively in skeletal and cardiac muscle, have been linked to muscular dystrophy.
View Article and Find Full Text PDFNeuromuscul Disord
December 2008
Four-and-a-half LIM domain 1 gene (FHL1) has recently been identified as the causative gene for reducing body myopathy (RBM), X-linked scapuloperoneal myopathy (SPM) and X-linked myopathy with postural muscle atrophy (XMPMA). Rigid spine is a common clinical feature of the three diseases. We searched for FHL1 mutations in eighteen patients clinically diagnosed as rigid spine syndrome (RSS).
View Article and Find Full Text PDFWe report a patient harboring a novel homozygous mutation of c.604T>G (p.F202V) in POMT2.
View Article and Find Full Text PDFMuscle Nerve
September 2008
In Ullrich congenital muscular dystrophy, due to heterozygous mutations in COL6 genes, collagen VI is preserved in the interstitium but lost in the sarcolemma. We found that the binding ability of mutated collagen VI to extracellular matrix was markedly reduced compared to control. This indicates that heterozygous mutations in COL6 genes diminish the anchorage of collagen VI microfibrils to the extracellular matrix surrounding myocytes.
View Article and Find Full Text PDFAnn Neurol
November 2006
Objective: The fukutin gene (FKTN) is the causative gene for Fukuyama-type congenital muscular dystrophy, characterized by rather homogeneous clinical features of severe muscle wasting and hypotonia from early infancy with mental retardation. In contrast with the severe dystrophic involvement of skeletal muscle, cardiac insufficiency is quite rare. Fukuyama-type congenital muscular dystrophy is one of the disorders associated with glycosylation defects of alpha-dystroglycan, an indispensable molecule for intra-extra cell membrane linkage.
View Article and Find Full Text PDFEmery-Dreifuss muscular dystrophy is an inherited muscular disorder clinically characterized by slowly progressive weakness affecting humero-peroneal muscles, early joint contractures, and cardiomyopathy with conduction block. The X-linked recessive form is caused by mutation in the EMD gene encoding an integral protein of the inner nuclear membrane, emerin. In this study, mutant mice lacking emerin were produced by insertion of a neomycin resistance gene into exon 6 of the coding gene.
View Article and Find Full Text PDFJ Neuropathol Exp Neurol
April 2005