98%
921
2 minutes
20
Background: This study aimed to explore the clinical significance of ruxolitinib and its effects on the proliferation and apoptosis of human erythroleukemia (HEL) cells and the expression of immune checkpoint molecules programmed death-1 (PD-1), programmed death-ligand 1 (PD-L1), and regulatory T cells (Tregs) in HEL cells and JAK2 V617F-positive patients with myeloproliferative neoplasms (MPNs).
Methods: JAK2 V617F-positive patients with MPNs admitted to the Baoding No. 1 Hospital from January 2016 to September 2023 were recruited, including 30 patients for the newly diagnosed group and 10 for the treatment group. Additionally, 15 healthy volunteers were selected as the control group. JAK2 V617F mutation was detected by using fluorescence quantitative PCR, and the expression levels of phosphorylated JAK2 (p-JAK2), PD-1, and PD-L1 in fresh bone marrow were examined by immunohistochemistry. HEL cells were treated with ruxolitinib at different concentrations (0, 50, 100, 250, 500, and 1,000 nmol/L). Cell viability was detected by CCK-8 assay. The mRNA expression levels of JAK2, PD-1, and PD-L1 were determined by using fluorescence quantitative PCR. The protein expression of p-JAK2 was detected by Western blot and those of PD-1 and PD-L1 were evaluated by flow cytometry. The expression of PD-1, PD-L1, and Tregs after the 48-hour co-culture of primary bone marrow cells and HEL cells were also analyzed by flow cytometry.
Results: In the newly diagnosed group, the bone marrow myeloid cells highly expressed p-JAK2, PD-1, and PD-L1. The Tregs expression in their peripheral blood increased and was significantly higher than those in the treatment and control groups (all p < 0.05). Ruxolitinib at different concentrations could inhibit the proliferation of HEL cells and was positively correlated with treatment time and dose. Additionally, ruxolitinib could reduce p-JAK2, PD-1, and PD-L1 expression in HEL cells and Tregs expression.
Conclusions: Ruxolitinib reduces the expression of p-JAK2, PD-1, and PD-L1 in JAK2 V617F-positive cells by specifically inhibiting the JAK2 signaling pathway, thereby suppressing the progression of MPNs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.7754/Clin.Lab.2024.240340 | DOI Listing |
Pharmacoeconomics
September 2025
Department of Pharmacy, Uppsala University, Box 580, 751 23, Uppsala, Sweden.
Background: Immune checkpoint inhibitors (ICIs) are clinically beneficial but associated with high costs that represent a growing challenge for healthcare budgets and may affect affordability, especially in resource-limited settings. Moreover, the healthcare sector is a significant source of greenhouse gas emissions, and medication-related waste-such as that from vial-based therapies-has been identified as a contributing factor. Alternative dosing strategies could reduce the environmental and financial impact of ICI therapy while maintaining clinical safety and efficacy.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
September 2025
Department of Gastroenterology, Jinhua Central Hospital, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, Zhejiang, China.
The fourth leading cause of cancer-related fatalities in the USA is pancreatic ductal adenocarcinoma (PDAC), a particularly deadly illness that is resistant to immunotherapy. One of the Main Obstacles in cancer research is developing better treatments for PDAC, which has the lowest 5-year survival rate of any malignancy. Anti-CTLA-4, anti-PD-L1, and anti-PD-1 immune checkpoint blockade medications also have poor results in these patients, which may indicate the presence of other immunosuppressive mechanisms in the pancreatic tumor microenvironment (TME).
View Article and Find Full Text PDFFront Immunol
September 2025
Department of Thoracic Surgery, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, China.
Background: Lung cancer remains the leading cause of cancer-related mortality globally, primarily due to late-stage diagnosis, molecular heterogeneity, and therapy resistance. Key biomarkers such as EGFR, ALK, KRAS, and PD-1 have revolutionized precision oncology; however, comprehensive structural and clinical validation of these targets is crucial to enhance therapeutic efficacy.
Methods: Protein sequences for EGFR, ALK, KRAS, and PD-1 were retrieved from UniProt and modeled using SWISS-MODEL to generate high-confidence 3D structures.
Am J Transplant
September 2025
Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School; Department of Surgery, Massachusetts General Hospital, Harvard Medical School; Department of Surgery, Hospital of the University of Pennsylvania, Perelman School of Medicine at the University of Pennsylvania
Achieving immune tolerance is a key goal in organ transplantation, as it eliminates the need for long-term immunosuppression. Regulatory B cells (Bregs) present a promising strategy for inducing tolerance. Our previous findings demonstrate that the adoptive transfer of ex vivo-expanded murine splenic B regulatory cells, referred to as TLR-Bregs (TLR9/TLR4 stimulation), induces tolerance to allografts.
View Article and Find Full Text PDFJ Clin Invest
September 2025
State Key Laboratory of Molecular Oncology, National Cancer Center/National, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
Pancreatic cancer (PC) is notoriously resistant to both chemotherapy and immunotherapy, presenting a major therapeutic challenge. Epigenetic modifications play a critical role in PC progression, yet their contribution to chemoimmunotherapy resistance remains poorly understood. Here, we identified the transcription factor ZEB1 as a critical driver of chemoimmunotherapy resistance in PC.
View Article and Find Full Text PDF