98%
921
2 minutes
20
The neurological symptoms of COVID-19, often referred to as neuro-COVID include neurological pain, memory loss, cognitive and sensory disruption. These neurological symptoms can persist for months and are known as Post-Acute Sequalae of COVID-19 (PASC). The molecular origins of neuro-COVID, and how it contributes to PASC are unknown, however a growing body of research highlights that the self-assembly of protein fragments from SARS-CoV-2 into amyloid nanofibrils may play a causative role. Previously, we identified two fragments from the SARS-CoV-2 proteins, Open Reading Frame (ORF) 6 and ORF10, that self-assemble into neurotoxic amyloid assemblies. Here we further our understanding of the self-assembly mechanisms and nano-architectures formed by these fragments and their biological responses. By solubilising the peptides in a fluorinated solvent, we eliminate insoluble aggregates in the starting materials (seeds) that change the polymorphic landscape of the assemblies. The resultant assemblies are dominated by structures with higher free energies ( ribbons and amorphous aggregates) that are less toxic to cultured neurons but do affect their mitochondrial respiration. We also show the first direct evidence of cellular uptake of viral amyloids. This work highlights the importance of understanding the polymorphic behaviour of amyloids and the correlation to neurotoxicity, particularly in the context of neuro-COVID and PASC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4nr03030c | DOI Listing |
J Neurochem
September 2025
Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
Memory formation involves a complex interplay of molecular and cellular processes, including synaptic plasticity mechanisms such as long-term potentiation (LTP) and long-term depression (LTD). These processes rely on activity-dependent gene expression and local protein synthesis at synapses. A central unresolved question in neuroscience is how memories can be stably maintained over time, despite the transient nature of the proteins involved in their initial encoding.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, P. R. China.
Emerging evidence underscores the regulatory roles of nonamyloidogenic regions in controlling the aggregation dynamics and cytotoxicity of amyloidal proteins, but the mechanism remains unclear. Herein we investigated how flanking sequences modulate the conformational heterogeneity in the p53 238-262 amyloid segment using scanning tunneling microscopy (STM). By comparing the wild-type (wt) and three pathogenic mutations (R248W, R248Q, R249S) in the noncore regions, we reveal that flanking alterations remodel β-sheet aggregates and induce conformational plasticity in β-strand ensembles through the generation of novel conformational substates and selective elimination of existing conformational substates.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China.
Amyloid-β (Aβ) fibrillation is a spontaneous, thermodynamic process governed by nucleation and elongation. While many studies have explored the ability of engineered nanomaterials (ENMs) to modulate Aβ fibrillation, such as inhibitors, promoters, and dual-modulators, the key physicochemical property of ENMs that determines this behavior remains unclear. In this study, we developed a comprehensive library of ENMs with well-controlled physicochemical properties, including surface charges, morphologies, and hydrophilicity, to systematically investigate their effects on Aβ40 fibrillation.
View Article and Find Full Text PDFActa Crystallogr D Struct Biol
October 2025
Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA.
Helical symmetry is a structural feature of many biological assemblies, including cytoskeletons, viruses and pathological amyloid fibrils. The helical parameters twist and rise are unique metadata for helical structures. With the increasing number of helical structures being resolved through cryo-EM and deposited in the EMDB, there is a growing possibility of errors in the metadata associated with these entries.
View Article and Find Full Text PDFProteins
September 2025
School of Advanced Sciences and Languages (SASL), VIT Bhopal University, Sehore, Madhya Pradesh, India.
The mechanisms driving amyloid assembly have long intrigued structural biologists, as they offer insights into systemic fibrotic changes and the dynamic behavior of transthyretin (TTR) aggregation, crucial for developing amyloid-targeted therapies. In TTR-associated amyloidosis, amyloid fibrils form via destabilization of the tetramer into dimers and monomers. While many TTR mutations have been studied, the atomistic impact of multiple mutations on amyloid transthyretin (ATTR) self-assembly remains underexplored.
View Article and Find Full Text PDF