98%
921
2 minutes
20
The characteristics of solid electrolyte interphase (SEI) at both the cathode and anode interfaces are crucial for the performance of sodium-ion batteries (SIBs). The research demonstrates the merits of a balanced organic component, specifically the organic sodium alkyl sulfonate (ROSONa) featured in this work, in conjunction with the inorganic sodium fluoride (NaF), to enhance the interfacial stability. Using a customized electrolyte, it has optimized the interphase, curbing excess NaF production, and created a thin and uniform NaF/ROSONa-rich SEI layer. It offers exceptional protection against interface deterioration, transition metal dissolution, and concurrently ensures a consistent reduction in interfacial impedance. This creative approach results in a substantial improvement in the performance of both the NaNiFeMnO cathode and the hard carbon anode. The cathode demonstrates remarkable average Coulombic efficiency exceeding 99.9% and a capacity retention of 81% after 500 cycles. Furthermore, the Ah-level pouch cell has shown outstanding performance with an 87% capacity retention after 400 cycles. Moving beyond the prevailing focus on inorganic-rich SEI, these results highlight the effectiveness of the customized organic-inorganic hybrid SEI formulation in improving SIB technology, offering an adaptable solution that ensures superior interfacial stability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202407425 | DOI Listing |
Small Methods
September 2025
Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics, Science and Technology, Hebei University, Baoding, 071002, China.
As a new generation of high-energy-density energy storage system, solid-state aluminum-ion batteries have attracted much attention. Nowadays polyethylene oxide (PEO)-based electrolytes have been initially applied to Lithium-ion batteries due to their flexible processing and good interfacial compatibility, their application in aluminum-ion batteries still faces problems. To overcome the limitations in aluminum-ion batteries-specifically, strong Al coordination suppressing ion dissociation, high room-temperature crystallinity, and inadequate mechanical strength-this study develops a blended polymer electrolyte (BPE) of polypropylene carbonate (PPC) and PEO.
View Article and Find Full Text PDFSmall
September 2025
School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, China.
Covalent organic frameworks (COFs) exhibit outstanding structural tunability, clearly defined ion pathways, and remarkable thermal/chemical stabilities, rendering them highly promising candidates for applications in solid-state electrolytes. However, it remains a challenge to develop a versatile method to incorporate both ionic groups and electron-withdrawing units into a single framework for effectively improving the lithium-ion conductivity. Herein, a series of novel [3+3] defective COFs is successfully synthesized featuring active amine/aldehyde anchoring sites for subsequent post-modification, and regulates the ion conductivity through elaborately tuning the anionic/cationic groups and weak/strong electron-withdrawing units.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China.
Sulfide solid electrolytes (SEs) exhibit excellent ionic conductivity and good mechanical properties, but their poor air stability and solid-solid contact performance seriously hinder the wide application of sulfide all-solid-state batteries (ASSBs). Herein, this paper reviews the history and the major breakthroughs in the development of sulfide SEs. The theories of hard-soft-acid-base theory and glass structure theory, as well as several strategies to improve the chemical stability of sulfide SEs, are discussed emphatically.
View Article and Find Full Text PDFFood Res Int
November 2025
Faculdade de Engenharia de Alimentos (FEA), Universidade Estadual de Campinas (UNICAMP), Rua Monteiro Lobato, 80, 13083-862, Campinas, São Paulo, Brazil. Electronic address:
The hydrolysis of biomass in fermentative processes often faces the difficulty of generating inhibitory products. Its reduction or removal is essential to enable the use of agro-industrial waste, such as cashew apple bagasse. Therefore, this study aimed to find an optimized condition for the hydrolysis of cashew apple bagasse by subcritical water and to introduce an in-line pre-purification process.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran. Electronic address:
In order to develop an alternate material for energy storage devices like batteries, this research is being done to create polymer electrolytes based on cellulose as natural polymer. Natural polymers as battery components have a number of advantages, including availability, biodegradability, unleakage, stable form, superior process, electrochemical stability, and low cost. In this study, polymer electrolytes based on cellulose have been synthesized by solution casting to prepare a thin polymer films.
View Article and Find Full Text PDF