Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Tumor-infiltrating-lymphocyte (TIL) therapy has demonstrated that endogenous T cells can be harnessed to initiate an effective anti-tumor response. Despite clinical promise, current TIL production protocols involve weeks-long expansions which can affect treatment efficacy. Therefore, additional tools are needed to engineer endogenous tumor-specific T cells to have increased potency while mitigating challenges of manufacturing. Here, we present a strategy for pseudotyping retroviral vectors with peptide-major histocompatibility complexes (pMHC) for antigen-specific gene delivery to CD8 T cells and examine the efficacy of these transduced cells in immunocompetent mouse models. We demonstrate that pMHC-targeted viruses are able to specifically deliver function-enhancing cargoes while simultaneously activating and expanding anti-tumor T cells. The specificity of these viral vectors enables engineering of tumor-specific T cells, circumventing manufacturing processes and improving overall survival in B16F10-bearing mice. Altogether, we have established that pMHC-targeted viruses are efficient vectors for reprogramming and expanding tumor-specific populations of T cells directly , with the potential to substantially streamline engineered cell therapy production for a variety of applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11429759PMC
http://dx.doi.org/10.1101/2024.09.18.613594DOI Listing

Publication Analysis

Top Keywords

tumor-specific cells
12
gene delivery
8
cells
8
pmhc-targeted viruses
8
peptide-mhc-targeted retroviruses
4
retroviruses enable
4
enable expansion
4
expansion gene
4
tumor-specific
4
delivery tumor-specific
4

Similar Publications

A Readily Synthesized All-In-One Nanowire Hydrogel: Toward Inhibiting Tumor Recurrence and Postoperative Infection.

Adv Mater

September 2025

Department of Minimally Invasive Interventional Radiology, The Second Affiliated Hospital &Guangzhou Institute of Cancer Research, The Affiliate Cancer Hospital &School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 510260, China.

Surgical resection remains the frontline intervention for cancer; however, postoperative tumor recurrence and wound infection remain critical unmet challenge in surgical oncology. Herein, an all-in-one nanowired hydrogel (V-Hydrogel) is developed through a facile one-step assembly employing enzyme-mimetic VO nanowires and bactericidal crosslinker THPS. The V-Hydrogel reserves the glutathione peroxidase-, peroxidase-, catalase-, and oxidase-mimetic enzymatic activities derived from vanadium oxide nanowires, thereby exhibiting efficient tumor-specific catalytic therapy.

View Article and Find Full Text PDF

B cells located in tertiary lymphoid structures (TLSs) may undergo clonal expansion, somatic hypermutation, isotype switching, and tumor-specific antibody production, suggesting that antibody-producing plasma cells may be involved in antitumor immunity. This study used a combination of single-cell sequencing (five samples from our center, and four samples from PRJNA662018) and spatial transcriptome (one sample from our center, and four samples from GSE169379) research methods to investigate the relationship between TLSs and the immunoglobulin repertoire in muscle invasive bladder cancer (MIBC). 405 patients with MIBC from TCGA and 348 patients with metastatic urothelial carcinoma on PD-L1 inhibitor treatment from the IMvigor210 trial were included in this study.

View Article and Find Full Text PDF

Isocitrate dehydrogenase mutation and microenvironment in gliomas: do immunotherapy approaches matter?

Curr Opin Neurol

September 2025

Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ).

Purpose Of Review: Gliomas with mutations in the gene for isocitrate dehydrogenase (IDH) display a unique immune microenvironment that is distinct from IDH-wildtype gliomas. This unique immune microenvironment is shaped by 2-hydroxyglutarate (2-HG), an oncometabolite produced by mutant IDH. These features provide an opportunity to develop and test targeted immunotherapies for IDH-mutant gliomas.

View Article and Find Full Text PDF

pH-triggered Schottky heterojunctions for NIR-II-activated and tumor-specific pyroelectrodynamic and photothermal therapy.

J Colloid Interface Sci

September 2025

Institute of Biomedical Engineering, College of Medicine, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, PR China. Electronic address:

Pyroelectrodynamic therapy (PEDT) of tumors faces challenges due to its low electrocatalytic efficiency at mild temperature and the potential for off-target toxicity to healthy tissue. To overcome these issues, we have engineered pyroelectric nanoparticles (NPs) that feature a pH-triggered heterojunction structure and tumor-selective reactive oxidative species (ROS) production, faclitating synergistic PEDT and mild photothermal therapy (PTT). Herein, molybdenum trioxide (MoO) was deposited in-situ on the surface of tetragonal BaTiO (tBT) to create tBT@MO.

View Article and Find Full Text PDF

Fluorescence-guided tumor resection with a cathepsin B-activatable, EGFR-targeted probe and a dual-mode surgical exoscope.

Eur J Med Chem

August 2025

Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea. Electronic address:

Fluorescence-guided surgery enhances surgical precision by enabling real-time tumor visualization. Here, we developed a cathepsin B-activatable imaging probe conjugated to the EGFR-targeting antibody cetuximab (Cetux-CB probe) for fluorescence-guided resection of triple-negative breast cancer (TNBC). The probe consists of a cathepsin B-sensitive peptide linker, a near-infrared fluorophore (Flamma™ Fluors 749), and a quencher (qFlamma Black01), enabling enzymatic activation following tumor-specific accumulation.

View Article and Find Full Text PDF