An Efficient Boron Source Activation Strategy for the Low-Temperature Synthesis of Boron Nitride Nanotubes.

Nanomicro Lett

National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, People's Republic of China.

Published: September 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Lowering the synthesis temperature of boron nitride nanotubes (BNNTs) is crucial for their development. The primary reason for adopting a high temperature is to enable the effective activation of high-melting-point solid boron. In this study, we developed a novel approach for efficiently activating boron by introducing alkali metal compounds into the conventional MgO-B system. This approach can be adopted to form various low-melting-point AM-Mg-B-O growth systems. These growth systems have improved catalytic capability and reactivity even under low-temperature conditions, facilitating the synthesis of BNNTs at temperatures as low as 850 °C. In addition, molecular dynamics simulations based on density functional theory theoretically demonstrate that the systems maintain a liquid state at low temperatures and interact with N atoms to form BN chains. These findings offer novel insights into the design of boron activation and are expected to facilitate research on the low-temperature synthesis of BNNTs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11436672PMC
http://dx.doi.org/10.1007/s40820-024-01521-2DOI Listing

Publication Analysis

Top Keywords

low-temperature synthesis
8
boron nitride
8
nitride nanotubes
8
growth systems
8
synthesis bnnts
8
boron
5
efficient boron
4
boron source
4
source activation
4
activation strategy
4

Similar Publications

Tailoring Active Sites in Amorphous NiFe-MOFs through Pyridine Ligand Coordination for Enhanced Oxygen Evolution Performance.

ACS Appl Mater Interfaces

September 2025

Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, P. R. China.

The development of high-performance, cost-effective non-noble metal catalysts for the oxygen evolution reaction (OER) is critical to advancing sustainable hydrogen production via water electrolysis. Herein, we report a facile and mild strategy for synthesizing amorphous bimetallic organic framework materials (NiFe-MOFs) using pyridine-modified threonine (l-PyThr) as an organic ligand. The optimized NiFe-PyThr-4:1 catalyst exhibits remarkable OER activity, requiring low overpotentials of only 162 and 222 mV to achieve current densities of 10 and 100 mA cm, respectively, along with a small Tafel slope of 34.

View Article and Find Full Text PDF

Unlabelled: Microhabitat heterogeneity results in significant variations in the thermal environment on a small spatial scale, leading to different intensities of cold stress during extreme low-temperature events. Investigating variations in body temperature and metabolomic responses of organisms inhabiting different microhabitats emerges as an important task for understanding how organisms respond to more frequent extreme low-temperature events in the face of climate change. In the present study, we measured substrate temperature, air temperature, wind speed, light intensity, and body temperature to evaluate the relative importance of drivers that affect body temperature in different microhabitats, and determined the metabolomic responses of intertidal snails and limpets from different microhabitats (snail: exposed vs.

View Article and Find Full Text PDF

The structure of the title compound, CHClN, was determined at low temperature (100 K). In the crystal, the mol-ecules are connected through C-H⋯N and C-H⋯Cl inter-molecular hydrogen bonds generating a network that extend along the [010] direction. In addition, C-H⋯π and π-π stacking inter-actions as well as inter-molecular contacts contribute to the cohesion of the structure.

View Article and Find Full Text PDF

Hybrid coatings composed of crystalline monetite (CaHPO) and kefir-derived Dextran were synthesized on Ti6Al4V substrates using a low-temperature sol-gel-assisted route (≤80 °C), enabling biopolymer integration without thermal degradation. X-ray diffraction (XRD) confirmed the formation of triclinic monetite nanocrystals (∼152 nm), while Fourier transform infrared (FTIR) and scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS) analyses verified the uniform incorporation of Dextran, particularly in the 4 wt % formulation, which yielded compact, homogeneous surfaces. Electrochemical evaluations in Fusayama artificial saliva revealed a substantial enhancement in corrosion resistance, with the open-circuit potential shifting from -0.

View Article and Find Full Text PDF

Nanoscale materials are attracting a great deal of attention due to their exceptional properties, making them indispensable for many advanced applications. Among these materials, spinel ferrites stand out for their potential applications in electronic, optoelectronic, energy storage and other devices. This is why the development of a synthesis process combined with rigorous optimization of annealing conditions is provided to be an essential approach to control nanoparticle formation and fine-tuning their structural, morphological and functional characteristics.

View Article and Find Full Text PDF