Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hypertrophic scars, which result from aberrant fibrosis and disorganized collagen synthesis by skin fibroblasts, emerge due to disrupted wound healing processes. These scars present significant psychosocial and functional challenges to affected individuals. The current treatment limitations largely arise from an incomplete understanding of the underlying mechanisms of hypertrophic scar development. Recent studies, however, have shed light on the potential of exosomal non‑coding RNAs interventions to mitigate hypertrophic scar proliferation. The present study assessed the impact of exosomes derived from adipose‑derived stem cells (ADSCs‑Exos) on hypertrophic scar formation using a rabbit ear model. It employed hematoxylin and eosin staining, Masson's trichrome staining and immunohistochemical staining techniques to track scar progression. The comprehensive analysis of the present study encompassed the differential expression of non‑coding RNAs, enrichment analyses of functional pathways, protein‑protein interaction studies and micro (mi)RNA‑mRNA interaction investigations. The results revealed a marked alteration in the expression levels of long non‑coding RNAs and miRNAs following ADSCs‑Exos treatment, with little changes observed in circular RNAs. Notably, miRNA (miR)‑194 emerged as a critical regulator within the signaling pathways that govern hypertrophic scar formation. Dual‑luciferase assays indicated a significant reduction in the promoter activity of TGF‑β1 following miR‑194 overexpression. Reverse transcription‑quantitative PCR and immunoblotting assays further validated the decrease in TGF‑β1 expression in the treated samples. In addition, the treatment resulted in diminished levels of inflammatory markers IL‑1β, TNF‑α and IL‑10. evidence strongly supported the role of miR‑194 in attenuating hypertrophic scar formation through the suppression of TGF‑β1. The present study endorsed the strategic use of ADSCs‑Exos, particularly through miR‑194 modulation, as an effective strategy for reducing scar formation and lowering pro‑inflammatory and fibrotic indicators such as TGF‑β1. Therefore, the present study advocated the targeted application of ADSCs‑Exos, with an emphasis on miR‑194 modulation, as a promising approach to managing proliferative scarring.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11465438PMC
http://dx.doi.org/10.3892/mmr.2024.13340DOI Listing

Publication Analysis

Top Keywords

hypertrophic scar
24
scar formation
20
non‑coding rnas
12
adipose‑derived stem
8
stem cells
8
scar
8
tgf‑β1 study
8
mir‑194 modulation
8
hypertrophic
7
formation
5

Similar Publications

Introduction: Facial scars are generally disfiguring and can cause both physiological and psychological trauma. Currently, there is a lack of effective treatment options for facial scars. In recent years, local superficial radiation therapy has emerged as a clinically proven treatment to effectively prevent scar recurrence after surgery.

View Article and Find Full Text PDF

Objective: Hypertrophic scars (HS) are a fibrotic proliferative disorder that results from an abnormal wound healing process, presenting significant challenges for clinical intervention. The primary characteristics of HS include excessive collagen deposition and angiogenesis. In recent years, the study of mesenchymal stem cells (MSCs) and their derived exosomes has emerged as a prominent area of research within the academic community.

View Article and Find Full Text PDF

Hypertrophic scarring (HTS) remains a critical challenge in burn care, often resulting in debilitating contractures, chronic pain, and significant psychosocial burden. While current treatment emphasizes structural repair, recent advances underscore the importance of addressing the biological drivers of fibrosis. This review synthesizes evolving strategies in burn scar prevention, highlighting tissue-engineered matrices, autologous cell therapies, and predictive molecular tools that shift care from reactive to regenerative.

View Article and Find Full Text PDF

Background: Hypertrophic scarring is a common pathological condition often associated with significant clinical symptoms. In pediatric patients, it can impair function and is difficult to treat due to the limited availability of effective treatment options.

Objective: To investigate the efficacy of pulsed dye and fractional CO laser combined with ultrasound-assisted transdermal drug delivery technology in the treatment of hypertrophic scars in pediatric patients.

View Article and Find Full Text PDF