Targeted V-type peptide-decorated nanoparticles prevent colitis by inhibiting endosomal TLR signaling and modulating intestinal macrophage polarization.

Biomaterials

State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Science, Department of Gas

Published: March 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Inflammatory bowel disease (IBD) has become a serious and challenging health problem globally without curative medical treatments. Mounting evidence suggests that intestinal macrophages and their phenotypes are key players in the pathogenesis of IBD. Modulating the phenotypes and functions of intestinal macrophages through targeted interventions could be a promising approach to manage detrimental gut inflammation in IBD. In this study, we rationally design and fabricate a novel class of V-type peptide-decorated nanoparticles, VP-NP, with potent anti-inflammatory activity. Such a design allows two functional motifs FFD in a single peptide molecule to enhance the bioactivity of the nanoparticles. As expected, VP-NP exhibits a strong inhibitory activity on endosomal Toll-like receptor (TLR) signaling. Surprisingly, VP-NP can inhibit M1 polarization while facilitating M2 polarization in mouse bone marrow-derived macrophages through regulating the key transcription factors NF-κB, STAT1 and PPAR-γ. Mechanistically, VP-NP is internalized by macrophages in the endosomes, where it blocks endosomal acidification to inhibit endosomal TLR signaling; the transcriptomic analysis reveals that VP-NP potently down-regulates many genes in TLR, NF-κB, JAK-STAT, and cytokine/chemokine signaling pathways associated with inflammatory responses. In a colitis mouse model, the intraperitoneally administered VP-NP effectively alleviates the disease activities by decreasing colon inflammation and injuries, pro-inflammatory cytokine production, and myeloid cell infiltration in the gut. Furthermore, VP-NP primarily targets intestinal macrophages and alters their phenotypes from inflammatory M1-type toward the anti-inflammatory M2-type. This study provides a new nanotherapeutic strategy to specifically regulate macrophage activation and phenotypes through a dual mechanism to control gut inflammation, which may augment current clinical treatments for IBD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2024.122843DOI Listing

Publication Analysis

Top Keywords

tlr signaling
12
intestinal macrophages
12
v-type peptide-decorated
8
peptide-decorated nanoparticles
8
endosomal tlr
8
gut inflammation
8
vp-np
7
macrophages
5
targeted v-type
4
nanoparticles prevent
4

Similar Publications

Lung cancer, particularly non-small cell lung cancer, is a leading cause of global mortality, with many cases diagnosed at advanced stages. The Toll-Like Receptor (TLR) signaling pathway plays a crucial role in linking inflammation to lung cancer progression, with both pro-tumor and anti-tumor effects. This perspective delves into the complex functions of TLR proteins in lung cancers, elucidating their involvement in tumor growth, angiogenesis, and metastasis.

View Article and Find Full Text PDF

Air pollution and diseases: signaling, G protein-coupled and Toll like receptors.

Pharmacol Ther

September 2025

Department of Molecular Pharmacology, University of Groningen, Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands. Electronic address:

Air pollution is a significant public health issue that impacts lung health, particularly in vulnerable populations such as children, the elderly, and individuals with pre-existing respiratory conditions. Both natural and anthropogenic sources of air pollution give rise to a variety of toxic compounds, including particulate matter (PM), ozone (O₃), sulfur dioxide (SO₂), nitrogen dioxide (NO₂), carbon monoxide (CO), and polycyclic aromatic hydrocarbons (PAHs). Exposure to these pollutants is strongly associated with the development and exacerbation of respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD), lung cancer, and idiopathic pulmonary fibrosis (IPF).

View Article and Find Full Text PDF

Identification of Immune-Related Long Non-Coding RNAs for Pulpitis Prediction Based on Competing Endogenous RNAs.

Int Dent J

September 2025

Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Chin

Introduction And Aims: Pulpitis is a chronic inflammatory disease affecting oral health. We aim to identify immune-related lncRNAs via bioinformatics analyses and explore their functions through ceRNA networks.

Methods: The expression profiles of 6 patients with pulpitis and 8 normal dental pulp have been obtained from Genome Sequence Archive.

View Article and Find Full Text PDF

Enriched Environment Alleviate AD Pathological Progression by Reducing Microglia Complement Signaling in Aged Male APP/PS1 Mice.

FASEB J

September 2025

Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China.

Alzheimer's disease (AD) is influenced by genetic and environmental factors. Previous studies showed that enriched environments improved memory and reduced amyloid plaques in AD mice, but the underlying mechanisms remain unclear. This study investigated the effects and mechanisms of enriched environments on AD pathology and cognitive function in aged APP/PS1 mice.

View Article and Find Full Text PDF

Fractionation and biological evaluation of passion fruit Pectins: HG and RG-I backbone ratios are associated with TLR2-1 interaction and signaling.

Carbohydr Polym

November 2025

Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil; Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo 05508-000, SP, Brazil; Food Research Center (FoRC), CEPID-FAPESP (Res

Passion fruit mesocarp is rich in pectin, and high-temperature/pressure modification of this pectin has been shown to yield bioactive fragments with anticancer potential. To clarify the structure-function relationship of passion fruit pectins, we purified native and modified pectins using two fractionation methods. Comprehensive chemical characterization revealed molecular weight as the primary difference between fractions, along with varying proportions of homogalacturonan (HG) and rhamnogalacturonan-I (RG-I).

View Article and Find Full Text PDF