Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Direct inkjet digital printing is a relatively green and environmentally friendly textile printing method with a wide range of applications in the textile printing and dyeing industry. However, pretreatment of the fabric is required before digital printing, which will generate certain energy consumption and wastewater. In this study, a digital direct inkjet printing method was developed to improve the printing accuracy of poly(ethylene terephthalate) (PET) fabrics without any pretreatment. A kind of direct inkjet printing ink was prepared by the response change in temperature viscosity. The increase in viscosity inhibits ink bleeding on the fabric, thereby improving printing accuracy. A thermosensitive direct inkjet printing disperse dye ink was prepared by adding cetyltrimethylammonium bromide (CTAB) and 3-methylsalicylic acid (3MS) to the ink. By evaluating the changes in the ink particle size, shear viscosity, and temperature viscosity, it was found that this thermosensitive ink has an excellent average particle size and special changes in viscosity with increasing temperature. When this heat-sensitive ink is printed on a polyester fabric, the fabric does not need pretreatment to improve the clarity of printing, and the printed fabric has satisfactory color fastness to friction and washing.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.4c01586DOI Listing

Publication Analysis

Top Keywords

direct inkjet
16
inkjet printing
12
printing
10
printing disperse
8
disperse dye
8
digital printing
8
textile printing
8
printing method
8
printing accuracy
8
ink prepared
8

Similar Publications

Disposble electrochemical aptasensors: From design strategies, signal amplification, to applications and future perspectives.

Talanta

September 2025

Department of Cardiology, Affiliated Huishan Hospital of Xinglin College, Nantong University, Wuxi Huishan District People's Hospital, Wuxi, 214187, China. Electronic address:

Disposable electrochemical aptasensors (DEAs) hold significant promise for different analyte detection across diverse fields, due to inherent advantages of rapid response, portability, low cost, and high sensitivity. This review systematically examines the design strategies, signal amplification methodologies, and recent advances in DEAs in the fields of environmental analysis, food safety monitoring, and medical diagnostics. Specifically, it critically evaluates construction strategies for screen-printed electrodes (SPEs) and paper-based electrodes, including substrate selection, ink formulations, and key fabrication techniques such as screen printing, inkjet printing, deposition methods, and direct-writing technologies.

View Article and Find Full Text PDF

Quantitative imaging of alpha-emitting radionuclides is essential for accurate dosimetry in radiopharmaceutical therapy (RPT). This study evaluates the performance of inkjet-deposited Am sources imaged with the ionizing-radiation Quantum Imaging Detector (iQID), focusing on spatial resolution, substrate effects, and activity recovery. Line and areal phantom patterns were printed onto stainless steel, nickel, and gold-coated nickel substrates.

View Article and Find Full Text PDF

The inactivation of fluorescein derivatives due to proton attack under acidic conditions completely limits the optical properties and hinders a wide range of applications. Aggregation-related quenching is found to be another fundamental trait in addition to spirocyclization. Self-assembled dispersions of surfactants have been shown to precisely break the quenching limitation, thereby fully restoring or even enhancing the original optical properties.

View Article and Find Full Text PDF

Partitioning cells in open nanowells permits high confidence in single cell occupancy and enables flexibility in the development of different molecular assays. A challenge for this approach however is to print cells sufficiently quickly to enable experiments of adequate statistical power in a reasonable time. To address this, we developed a single cell dispensing instrument leveraging inkjet technology with continuous real-time optical feedback and machine learning algorithms for high-throughput single cell isolation.

View Article and Find Full Text PDF

Over the past four decades, additive manufacturing (AM), particularly three-dimensional (3D) printing, has emerged as a transformative force in chemical and biosensing technologies, revolutionizing prototyping and production across laboratories and industries. Recent advancements in 3D printing techniques and materials have accelerated the development of novel sensors for diverse applications, offering unparalleled advantages such as rapid prototyping, customization, and cost efficiency. Unlike traditional fabrication methods, 3D printing creates intricate, high-precision structures while reducing multi-step processes, making it ideal for biosensing applications.

View Article and Find Full Text PDF