98%
921
2 minutes
20
Organic-inorganic metal halide (OIMH) glass offers the advantages of large-scale production, high transparency, and minimal light scattering. However, undesired crystallization in OIMH glass can occur, leading to deteriorated transparency. Herein, a series of bisphosphonium organic cations were designed to construct Mn-based metal halide crystals with a photoluminescence quantum yield (PLQY) near unity, alongside the development of highly thermally stable OIMH glasses. Two strategies were employed to lower the melting point of OIMH: alkyl chain elongation and fluorine substitution. The (Hex-3,4-2F)MnBr·MeOH (Hex-3,4-2F = hexane-1,6-diylbis((3,4-difluorobenzyl)diphenylphosphonium)) crystal delivers a glass transition temperature of 100 °C and the highest / ratio (0.82) among OIMHs. The resulting OIMH glass exhibits a PLQY of 47.6%, achieves an impressive resolution of 25 lp mm in X-ray imaging, and remains transparent even after being heated at 90 °C for six weeks. These bisphosphonium-based OIMH glasses present a feasible design for the practical application of OIMH glasses in radiation detection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11409857 | PMC |
http://dx.doi.org/10.1039/d4sc04229h | DOI Listing |
J Am Chem Soc
September 2025
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
Cross-electrophile coupling (XEC) reactions are considered to be among the most fundamental construction of carbon-carbon bonds in organic chemistry. Traditionally, stoichiometric reductants, including metallic and organic reagents, are required to promote these conversions, resulting in significant waste that contributes to environmental pollution and increased disposal costs. In this study, we report a divided electrochemical synthesis-based cross-coupling platform in which HO is oxidized at the anode surface to generate electrons that produce a lower oxidation state nickel catalyst on the cathode surface, enabling XEC reactions without the need for metallic or organic reagents.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, and Collaborative Innovation Center of Nano Functional Materials and Application
Metal halide perovskite solar cells (PSCs) hold promise for next-generation photovoltaics but are restricted by suboptimal efficiency and poor long-term stability. In inverted PSC architectures, self-assembled monolayers (SAMs) are widely employed as hole-selective layers (HSLs) due to their favorable energy-level alignment and negligible parasitic absorption. However, traditional SAMs often exhibit weak intermolecular interactions, leading to film aggregation, poor interfacial contact, and severe nonradiative recombination.
View Article and Find Full Text PDFAdv Mater
September 2025
Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
Metal-halide perovskites are known for their strong and tunable luminescence. However, the synthesis of perovskite-based particles with circularly polarized light emission (CPLE) remains challenging due to the complex interplay of metal-ligand chemistries, crystallization patterns, and chirality transfer mechanisms. Achiral perovskites can be deposited on chiral "hedgehog" particles (CHIPs) with twisted spikes, producing chiroptically active materials with spectroscopic bands specific to the perovskite and chirality specific to the template CHIPs.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
State Key Laboratory of Functional Crystals and Devices, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China.
Chiral metal halide perovskites (CMHPs) are a promising class of chiroptical materials with significant potential applications in chiral-optoelectronic and chiral-spintronic devices. However, their chirality induction generally stems from the incorporation of chiral ligands, which constitutes compositional diversity and functional versatility. Herein, we report a significant chiral expression resulting from two distinct mechanisms: chirality transfer induced by chiral organic cations and mirror symmetry breaking driven by stereochemically active lone pairs, both contributing to controlled chirality induction.
View Article and Find Full Text PDFAdv Opt Mater
May 2025
Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Cambridge, Massachusetts, 02139, USA.
Lead halide perovskites (LHP) are solution-processible semiconductor materials with high optical gain and broad wavelength tunability, making them well-suited for laser applications. Here, we present a solution-based method for the three-dimensional conformal coating of LHP microcrystals with noble metals. A nanoscale metal coating layer was found to significantly enhance both laser performance and environmental stability.
View Article and Find Full Text PDF