[Construction of Saccharomyces cerevisiae cell factories for fermentation production of retinol].

Zhongguo Zhong Yao Za Zhi

Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences Tianjin 300308, China Key Laboratory of Engineering Biology for Low-Carbon Manufacturing Tianjin 300308, China National Center of Technology Innovation for Synthetic Biology Tianjin 300308, China Haihe Laboratory of Synthetic

Published: August 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Retinol is one of the main active forms of vitamin A, crucial for the organism's growth, development, and maintenance of eye and skin functions. It is widely used in cosmetics, pharmaceuticals, and feed additives. Although animals lack a complete pathway for synthesizing vitamin A internally, they can obtain vitamin A directly through diet or convert β-carotene acquired from the diet. To boost the research on the biosynthesis of retinol, three different sources of alcohol dehydrogenase were firstly screened based on the β-carotene synthesis platform CAR*1. It was determined that ybbO from Escherichia coli exhibited the highest catalytic activity,with a conversion rate of 95. 6%. To further enhance the reaction rate and yield of retinol, protein fusion technology was employed to merge two adjacent enzymes, blh and ybbO, within the retinol synthesis module. The evaluation was conducted using the high-yield engineered strain CAR*3 of β-carotene. The optimal combination, blh-GGGS-ybbO, was obtained, with a 44. 9% increase in yield after fusion, reaching(111. 1± 3. 5) mg·L~(-1). Furthermore, through the introduction of human-derived retinol-binding protein(RBP4) and transthyretin(TTR), the process of hepatic cell secreting retinol was simulated in Saccharomyces cerevisiae, leading to an increased retinol yield of(158. 0±13. 1)mg·L~(-1). Finally, optimization strategies including overexpressing INO2 to enhance the reaction area for β-carotene synthesis, enhancing hemoglobin VHb expression to improve oxygen supply, and strengthening PDR3m expression to facilitate retinol transport were implemented. A two-stage fermentation process resulted in the successful elevation of retinol production to(2 320. 0±26. 0)mg·L~(-1) in the fermentation tank of 5 L, which provided a significant foundation for the industrial development of retinol.

Download full-text PDF

Source
http://dx.doi.org/10.19540/j.cnki.cjcmm.20240517.105DOI Listing

Publication Analysis

Top Keywords

retinol
9
saccharomyces cerevisiae
8
β-carotene synthesis
8
enhance reaction
8
[construction saccharomyces
4
cerevisiae cell
4
cell factories
4
factories fermentation
4
fermentation production
4
production retinol]
4

Similar Publications

Introduction: Conventional dendritic cells (cDCs) in the gut express the vitamin A (VA)-converting enzyme retinal dehydrogenase 2 (RALDH2) and produce significant amounts of retinoic acid (RA). RA derived from gut cDCs contributes to the generation of tolerogenic responses by promoting Treg differentiation while inhibiting Th1 and Th17 cell differentiation. In this study, we investigated whether similar RA-mediated immunoregulatory mechanisms operate in the pancreas using an experimental autoimmune pancreatitis (AIP) model.

View Article and Find Full Text PDF

Research Note: Impact of different carrot forms on production results and physiochemical features of carcass elements in broiler ducks.

Poult Sci

September 2025

Laboratory of Chemical Research and Instrumental Analysis, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Mazowiecka 28, 85-084, Bydgoszcz, Poland.

The objective of this study was to evaluate the effect of dietary inclusion of different carrot forms on production results, carcass traits, meat quality, fatty acid (FA) composition, vitamin content, and feed costs in Cherry Valley broiler ducks. A total of 240 one-day-old males (initial body weight of 55.2 g) were allocated to 4 treatments (n = 60; 6 replicates of 10 birds): control (CD; 100 % commercial diet), CFL (CD + 2 % carrot flakes), RAWC (80 % CD + 20 % raw carrot), and CPOW (CD + 2 % carrot powder).

View Article and Find Full Text PDF

Biofortification of tomatoes with beta-carotene through targeted gene editing.

Int J Biol Macromol

September 2025

Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai, 200240, China. Electronic address:

Vitamin A deficiency is one of the most severe micronutrient-related health issues worldwide. Tomatoes, a widely cultivated crop for their adaptability, nutritional value, and lycopene content (a beta-carotene precursor), are ideal candidates for biofortification. In this study, CRISPR-mediated knockout mutants (cr-SlLCYe and cr-SlBCH) were generated to enhance the precursor supply to the β-carotene biosynthetic pathway and reduce its degradation.

View Article and Find Full Text PDF

Ellagic acid (EA), a bioactive polyphenol abundant in pomegranate and berries, exhibits potential in metabolic regulation. This study investigates EA's anti-obesity mechanisms, focusing on its effects on gut microbiota and transcriptional regulation in adipose tissue. After a 9-week high-fat diet feeding, mice were divided into groups and treated with low-dose EA (10 mg/kg/day), high-dose EA (30 mg/kg/day), or urolithin A (20 mg/kg/day) for 7 weeks, with healthy and obese controls included.

View Article and Find Full Text PDF

Demystifying Intricate Factors of Nutritional Anemia Beyond Iron Deficiency-A Narrative Review.

Clin Nutr ESPEN

September 2025

Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India; Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia. Electronic addr

Background & Aims: Nutritional anemia is a widespread public health issue, impacting about one-quarter of the global population (24.3% in 2021; ∼1.92 billion people).

View Article and Find Full Text PDF